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INTRODUCTION 
 
 
This series of articles is a tutorial on the theory  and practice 
of  developing language parsers and compilers.    Before  we  are 
finished,  we  will  have  covered  every   aspect   of  compiler 
construction, designed a new programming  language,  and  built a 
working compiler. 
 



Though I am not a computer scientist by education (my Ph.D. is in 
a different  field, Physics), I have been interested in compilers 
for many years.  I have  bought  and tried to digest the contents 
of virtually every  book  on  the  subject ever written.  I don't 
mind  telling you that it was slow going.    Compiler  texts  are 
written for Computer  Science  majors, and are tough sledding for 
the rest of us.  But over the years a bit of it began to seep in. 
What really caused it to jell was when I began  to  branch off on 
my own and begin to try things on my own computer.  Now I plan to 
share with you what I have  learned.    At the end of this series 
you will by no means be  a  computer scientist, nor will you know 
all the esoterics of  compiler  theory.    I intend to completely 
ignore the more theoretical  aspects  of  the  subject.  What you 
_WILL_ know is all  the  practical aspects that one needs to know 
to build a working system. 
 
This is a "learn-by-doing" series.  In the course of the series I 
will be performing  experiments  on  a  computer.    You  will be 
expected to follow along,  repeating  the  experiments that I do, 
and  performing  some  on your own.  I will be using Turbo Pascal 
4.0 on a PC  clone.   I will periodically insert examples written 
in TP.  These will be executable code, which you will be expected 
to copy into your own computer and run.  If you don't have a copy 
of  Turbo,  you  will be severely limited in how well you will be 
able to follow what's going on.  If you don't have a copy, I urge 
you to get one.  After  all,  it's an excellent product, good for 
many other uses! 
 
Some articles on compilers show you examples, or show you  (as in 
the case of Small-C) a finished product, which you can  then copy 
and  use without a whole lot of understanding of how it works.  I 
hope to do much more  than  that.    I  hope to teach you HOW the 
things get done,  so that you can go off on your own and not only 
reproduce what I have done, but improve on it. 
                               
This is admittedly an ambitious undertaking, and it won't be done 
in  one page.  I expect to do it in the course  of  a  number  of 
articles.    Each  article will cover a single aspect of compiler 
theory,  and  will  pretty  much  stand  alone.   If  all  you're 
interested in at a given time is one  aspect,  then  you  need to 
look only at that one article.  Each article will be  uploaded as 
it  is complete, so you will have to wait for the last one before 
you can consider yourself finished.  Please be patient. 
 
 
 
The average text on  compiler  theory covers a lot of ground that 
we won't be covering here.  The typical sequence is: 
 
 o An introductory chapter describing what a compiler is. 
 
 o A chapter or two on syntax equations, using Backus-Naur Form 
   (BNF). 
 
 o A chapter or two on lexical scanning, with emphasis on 
   deterministic and non-deterministic finite automata. 
 



 o Several chapters on parsing theory, beginning with top-down 
   recursive descent, and ending with LALR parsers. 
 
 o A chapter on intermediate languages, with emphasis on P-code 
   and similar reverse polish representations. 
 
 o Many chapters on alternative ways to handle subroutines and 
   parameter passing, type declarations, and such. 
 
 o A chapter toward the end on code generation, usually for some 
   imaginary CPU with a simple instruction set.  Most readers 
   (and in fact, most college classes) never make it this far. 
 
 o A final chapter or two on optimization. This chapter often 
   goes unread, too. 
 
 
I'll  be taking a much different approach in  this  series.    To 
begin  with,  I  won't dwell long on options.  I'll be giving you 
_A_ way that works.  If you want  to  explore  options,  well and 
good ...  I  encourage  you  to do so ... but I'll be sticking to 
what I know.   I also will skip over most of the theory that puts 
people  to  sleep.  Don't get me  wrong:  I  don't  belittle  the 
theory, and it's vitally important  when it comes to dealing with 
the more tricky  parts  of  a  given  language.  But I believe in 
putting first things first.    Here we'll be dealing with the 95% 
of compiler techniques that don't need a lot of theory to handle. 
 
I  also  will  discuss only one approach  to  parsing:  top-down, 
recursive descent parsing, which is the  _ONLY_  technique that's 
at  all   amenable  to  hand-crafting  a  compiler.    The  other 
approaches are only useful if you have a tool like YACC, and also 
don't care how much memory space the final product uses. 
                               
I  also take a page from the work of Ron Cain, the author of  the 
original Small C.  Whereas almost all other compiler authors have 
historically  used  an  intermediate  language  like  P-code  and 
divided  the  compiler  into two parts (a front end that produces 
P-code,  and   a  back  end  that  processes  P-code  to  produce 
executable   object  code),  Ron  showed  us   that   it   is   a 
straightforward  matter  to  make  a  compiler  directly  produce 
executable  object  code,  in  the  form  of  assembler  language 
statements.  The code will _NOT_ be the world's tightest code ... 
producing optimized code is  a  much  more  difficult job. But it 
will work, and work reasonably well.  Just so that I  don't leave 
you with the impression that our end product will be worthless, I 
_DO_ intend to show you how  to  "soup up" the compiler with some 
optimization. 
 
 
 
Finally, I'll be  using  some  tricks  that I've found to be most 
helpful in letting  me  understand what's going on without wading 
through a lot of boiler plate.  Chief among these  is  the use of 
single-character tokens, with no embedded spaces,  for  the early 
design work.  I figure that  if  I  can get a parser to recognize 
and deal with I-T-L, I can  get  it  to do the same with IF-THEN- 



ELSE.  And I can.  In the second "lesson,"   I'll  show  you just 
how easy it  is  to  extend  a  simple parser to handle tokens of 
arbitrary length.  As another  trick,  I  completely  ignore file 
I/O, figuring that  if  I  can  read source from the keyboard and 
output object to the screen, I can also do it from/to disk files. 
Experience  has  proven  that  once  a   translator   is  working 
correctly, it's a  straightforward  matter to redirect the I/O to 
files.    The last trick is that I make no attempt  to  do  error 
correction/recovery.   The   programs   we'll  be  building  will 
RECOGNIZE errors, and will not CRASH, but they  will  simply stop 
on the first error ... just like good ol' Turbo does.  There will 
be  other tricks that you'll see as you go. Most of them can't be 
found in any compiler textbook, but they work. 
 
A word about style and efficiency.    As  you will see, I tend to 
write programs in  _VERY_  small, easily understood pieces.  None 
of the procedures we'll  be  working with will be more than about 
15-20 lines long.  I'm a fervent devotee  of  the  KISS  (Keep It 
Simple, Sidney) school of software development.  I  try  to never 
do something tricky or  complex,  when  something simple will do. 
Inefficient?  Perhaps, but you'll like the  results.    As  Brian 
Kernighan has said,  FIRST  make  it  run, THEN make it run fast. 
If, later on,  you want to go back and tighten up the code in one 
of  our products, you'll be able to do so, since the code will be 
quite understandable. If you  do  so, however, I urge you to wait 
until the program is doing everything you want it to. 
 
I  also  have  a  tendency  to  delay  building  a module until I 
discover that I need  it.    Trying  to anticipate every possible 
future contingency can  drive  you  crazy,  and  you'll generally 
guess wrong anyway.    In  this  modern day of screen editors and 
fast compilers, I don't hesitate to change a module when I feel I 
need a more powerful one.  Until then,  I'll  write  only  what I 
need. 
 
One final caveat: One of the principles we'll be sticking to here 
is that we don't  fool  around with P-code or imaginary CPUs, but 
that we will start out on day one  producing  working, executable 
object code, at least in the form of  assembler  language source. 
However, you may not  like  my  choice  of assembler language ... 
it's 68000 code, which is what works on my system (under SK*DOS). 
I  think  you'll  find, though, that the translation to any other 
CPU such as the 80x86 will  be  quite obvious, though, so I don't 
see  a problem here.  In fact, I hope someone out there who knows 
the '86 language better than I do will offer  us  the  equivalent 
object code fragments as we need them. 
 
 
THE CRADLE 
 
Every program needs some boiler  plate  ...  I/O  routines, error 
message routines, etc.   The  programs we develop here will be no 
exceptions.    I've  tried to hold  this  stuff  to  an  absolute 
minimum, however, so that we  can  concentrate  on  the important 
stuff without losing it  among  the  trees.  The code given below 
represents about the minimum that we need to  get  anything done. 
It consists of some I/O routines, an error-handling routine and a 



skeleton, null main program.   I  call  it  our  cradle.    As we 
develop other routines, we'll add them to the cradle, and add the 
calls to them as we  need to.  Make a copy of the cradle and save 
it, because we'll be using it more than once. 
 
There are many different ways to organize the scanning activities 
of  a  parser.   In Unix systems, authors tend to  use  getc  and 
ungetc.  I've had very good luck with the  approach  shown  here, 
which is to use  a  single, global, lookahead character.  Part of 
the initialization procedure  (the  only part, so far!) serves to 
"prime  the  pump"  by reading the first character from the input 
stream.  No other special  techniques are required with Turbo 4.0 
... each successive call to  GetChar will read the next character 
in the stream. 
 
 
{--------------------------------------------------------------} 
program Cradle; 
 
{--------------------------------------------------------------} 
{ Constant Declarations } 
 
const TAB = ^I; 
 
{--------------------------------------------------------------} 
{ Variable Declarations } 
 
var Look: char;              { Lookahead Character } 
                               
{--------------------------------------------------------------} 
{ Read New Character From Input Stream } 
 
procedure GetChar; 
begin 
   Read(Look); 
end; 
 
{--------------------------------------------------------------} 
{ Report an Error } 
 
procedure Error(s: string); 
begin 
   WriteLn; 
   WriteLn(^G, 'Error: ', s, '.'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Report Error and Halt } 
 
procedure Abort(s: string); 
begin 
   Error(s); 
   Halt; 
end; 
 
 



{--------------------------------------------------------------} 
{ Report What Was Expected } 
 
procedure Expected(s: string); 
begin 
   Abort(s + ' Expected'); 
end; 
 
{--------------------------------------------------------------} 
{ Match a Specific Input Character } 
 
procedure Match(x: char); 
begin 
   if Look = x then GetChar 
   else Expected('''' + x + ''''); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an Alpha Character } 
 
function IsAlpha(c: char): boolean; 
begin 
   IsAlpha := upcase(c) in ['A'..'Z']; 
end; 
                               
 
{--------------------------------------------------------------} 
 
{ Recognize a Decimal Digit } 
 
function IsDigit(c: char): boolean; 
begin 
   IsDigit := c in ['0'..'9']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
function GetName: char; 
begin 
   if not IsAlpha(Look) then Expected('Name'); 
   GetName := UpCase(Look); 
   GetChar; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNum: char; 
begin 
   if not IsDigit(Look) then Expected('Integer'); 
   GetNum := Look; 
   GetChar; 
end; 



 
 
{--------------------------------------------------------------} 
{ Output a String with Tab } 
 
procedure Emit(s: string); 
begin 
   Write(TAB, s); 
end; 
 
 
 
 
{--------------------------------------------------------------} 
{ Output a String with Tab and CRLF } 
 
procedure EmitLn(s: string); 
begin 
   Emit(s); 
   WriteLn; 
end; 
 
{--------------------------------------------------------------} 
{ Initialize } 
 
procedure Init; 
begin 
   GetChar; 
end; 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
   Init; 
end. 
{--------------------------------------------------------------} 
 
 
That's it for this introduction.  Copy the code above into TP and 
compile it.  Make sure that it compiles and runs  correctly. Then 
proceed to the first lesson, which is on expression parsing. 
 
 
***************************************************************** 
*                                                               * 
*                        COPYRIGHT NOTICE                       * 
*                                                               * 
*   Copyright (C) 1988 Jack W. Crenshaw. All rights reserved.   * 
*                                                               * 
***************************************************************** 
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GETTING STARTED 
 
If you've read the introduction document to this series, you will 
already know what  we're  about.    You will also have copied the 
cradle software  into your Turbo Pascal system, and have compiled 
it.  So you should be ready to go. 
 
 



The purpose of this article is for us to learn  how  to parse and 
translate mathematical expressions.  What we would like to see as 
output is a series of assembler-language statements  that perform 
the desired actions.    For purposes of definition, an expression 
is the right-hand side of an equation, as in 
 
               x = 2*y + 3/(4*z) 
 
In the early going, I'll be taking things in _VERY_  small steps. 
That's  so  that  the beginners among you won't get totally lost. 
There are also  some  very  good  lessons to be learned early on, 
that will serve us well later.  For the more experienced readers: 
bear with me.  We'll get rolling soon enough. 
 
SINGLE DIGITS 
 
In keeping with the whole theme of this series (KISS, remember?), 
let's start with the absolutely most simple case we can think of. 
That, to me, is an expression consisting of a single digit. 
 
Before starting to code, make sure you have a  baseline  copy  of 
the  "cradle" that I gave last time.  We'll be using it again for 
other experiments.  Then add this code: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Expression } 
 
procedure Expression; 
begin 
   EmitLn('MOVE #' + GetNum + ',D0') 
end; 
{---------------------------------------------------------------} 
 
 
And add the  line  "Expression;"  to  the main program so that it 
reads: 
                               
 
{---------------------------------------------------------------} 
begin 
   Init; 
   Expression; 
end. 
{---------------------------------------------------------------} 
 
 
Now  run  the  program. Try any single-digit number as input. You 
should get a single line of assembler-language output.    Now try 
any  other character as input, and you'll  see  that  the  parser 
properly reports an error. 
 
 
CONGRATULATIONS! You have just written a working translator! 
 
OK, I grant you that it's pretty limited. But don't brush  it off 
too  lightly.  This little "compiler" does,  on  a  very  limited 



scale,  exactly  what  any larger compiler does:    it  correctly 
recognizes legal  statements in the input "language" that we have 
defined for it, and  it  produces  correct,  executable assembler 
code,  suitable  for  assembling  into  object  format.  Just  as 
importantly,  it correctly  recognizes  statements  that  are NOT 
legal, and gives a  meaningful  error message.  Who could ask for 
more?  As we expand our  parser,  we'd better make sure those two 
characteristics always hold true. 
 
There  are  some  other  features  of  this  tiny  program  worth 
mentioning.    First,  you  can  see that we don't separate  code 
generation from parsing ...  as  soon as the parser knows what we 
want  done, it generates the object code directly.    In  a  real 
compiler, of course, the reads in GetChar would be  from  a  disk 
file, and the writes to another  disk  file, but this way is much 
easier to deal with while we're experimenting. 
 
Also note that an expression must leave a result somewhere.  I've 
chosen the  68000  register  DO.    I  could have made some other 
choices, but this one makes sense. 
 
 
BINARY EXPRESSIONS 
 
Now that we have that under our belt,  let's  branch  out  a bit. 
Admittedly, an "expression" consisting of only  one  character is 
not going to meet our needs for long, so let's see what we can do 
to extend it. Suppose we want to handle expressions of the form: 
 
                         1+2 
     or                  4-3 
     or, in general, <term> +/- <term> 
 
(That's a bit of Backus-Naur Form, or BNF.) 
                               
To do this we need a procedure that recognizes a term  and leaves 
its   result   somewhere,  and  another   that   recognizes   and 
distinguishes  between   a  '+'  and  a  '-'  and  generates  the 
appropriate code.  But if Expression is going to leave its result 
in DO, where should Term leave its result?    Answer:    the same 
place.  We're  going  to  have  to  save the first result of Term 
somewhere before we get the next one. 
 
OK, basically what we want to  do  is have procedure Term do what 
Expression was doing before.  So just RENAME procedure Expression 
as Term, and enter the following new version of Expression: 
 
 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
procedure Expression; 
begin 
   Term; 
   EmitLn('MOVE D0,D1'); 



   case Look of 
    '+': Add; 
    '-': Subtract; 
   else Expected('Addop'); 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
Next, just above Expression enter these two procedures: 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an Add } 
 
procedure Add; 
begin 
   Match('+'); 
   Term; 
   EmitLn('ADD D1,D0'); 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Subtract } 
 
procedure Subtract; 
begin 
   Match('-'); 
   Term; 
   EmitLn('SUB D1,D0'); 
end; 
{-------------------------------------------------------------} 
                               
 
When you're finished with that,  the order of the routines should 
be: 
 
 o Term (The OLD Expression) 
 o Add 
 o Subtract 
 o Expression 
 
Now run the program.  Try any combination you can think of of two 
single digits,  separated  by  a  '+' or a '-'.  You should get a 
series of four assembler-language instructions out  of  each run. 
Now  try  some  expressions with deliberate errors in them.  Does 
the parser catch the errors? 
 
Take  a  look  at the object  code  generated.    There  are  two 
observations we can make.  First, the code generated is  NOT what 
we would write ourselves.  The sequence 
 
        MOVE #n,D0 
        MOVE D0,D1 
 
is inefficient.  If we were  writing  this code by hand, we would 



probably just load the data directly to D1. 
 
There is a  message  here:  code  generated by our parser is less 
efficient  than the code we would write by hand.  Get used to it. 
That's going to be true throughout this series.  It's true of all 
compilers to some extent.  Computer scientists have devoted whole 
lifetimes to the issue of code optimization, and there are indeed 
things that can be done to improve the quality  of  code  output. 
Some compilers do quite well, but  there  is a heavy price to pay 
in complexity, and it's  a  losing  battle  anyway ... there will 
probably never come a time when  a  good  assembler-language pro- 
grammer can't out-program a compiler.    Before  this  session is 
over, I'll briefly mention some ways that we can do a  little op- 
timization,  just  to  show you that we can indeed improve things 
without too much trouble.  But remember, we're here to learn, not 
to see how tight we can make  the  object  code.    For  now, and 
really throughout  this  series  of  articles,  we'll  studiously 
ignore optimization and  concentrate  on  getting  out  code that 
works. 
 
Speaking of which: ours DOESN'T!  The code is _WRONG_!  As things 
are working  now, the subtraction process subtracts D1 (which has 
the FIRST argument in it) from D0 (which has the second).  That's 
the wrong way, so we end up with the wrong  sign  for the result. 
So let's fix up procedure Subtract with a  sign-changer,  so that 
it reads 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Subtract } 
 
procedure Subtract; 
begin 
   Match('-'); 
   Term; 
   EmitLn('SUB D1,D0'); 
   EmitLn('NEG D0'); 
end; 
{-------------------------------------------------------------} 
 
 
Now  our  code  is even less efficient, but at least it gives the 
right answer!  Unfortunately, the  rules that give the meaning of 
math expressions require that the terms in an expression come out 
in an inconvenient  order  for  us.    Again, this is just one of 
those facts of life you learn to live with.   This  one will come 
back to haunt us when we get to division. 
 
OK,  at this point we have a parser that can recognize the sum or 
difference of two digits.    Earlier,  we  could only recognize a 
single digit.  But  real  expressions can have either form (or an 
infinity of others).  For kicks, go back and run the program with 
the single input line '1'. 
 
Didn't work, did it?   And  why  should  it?    We  just finished 
telling  our  parser  that the only kinds of expressions that are 
legal are those  with  two  terms.    We  must  rewrite procedure 



Expression to be a lot more broadminded, and this is where things 
start to take the shape of a real parser. 
 
 
 
 
GENERAL EXPRESSIONS 
 
In the  REAL  world,  an  expression  can  consist of one or more 
terms, separated  by  "addops"  ('+'  or  '-').   In BNF, this is 
written 
 
          <expression> ::= <term> [<addop> <term>]* 
 
 
We  can  accomodate  this definition of an  expression  with  the 
addition of a simple loop to procedure Expression: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
procedure Expression; 
begin 
   Term; 
   while Look in ['+', '-'] do begin 
      EmitLn('MOVE D0,D1'); 
      case Look of 
       '+': Add; 
       '-': Subtract; 
      else Expected('Addop'); 
      end; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
NOW we're getting somewhere!   This version handles any number of 
terms, and it only cost us two extra lines of code.  As we go on, 
you'll discover that this is characteristic  of  top-down parsers 
... it only takes a few lines of code to accomodate extensions to 
the  language.    That's  what  makes  our  incremental  approach 
possible.  Notice, too, how well the code of procedure Expression 
matches the BNF definition.   That, too, is characteristic of the 
method.  As you get proficient in the approach, you'll  find that 
you can turn BNF into parser code just about as  fast  as you can 
type! 
 
OK, compile the new version of our parser, and give it a try.  As 
usual,  verify  that  the  "compiler"   can   handle   any  legal 
expression,  and  will  give a meaningful error  message  for  an 
illegal one.  Neat, eh?  You might note that in our test version, 
any error message comes  out  sort of buried in whatever code had 
already been  generated. But remember, that's just because we are 
using  the  CRT  as  our  "output  file"  for   this   series  of 
experiments.  In a production version, the two  outputs  would be 
separated ... one to the output file, and one to the screen. 



 
 
USING THE STACK 
 
At  this  point  I'm going to  violate  my  rule  that  we  don't 
introduce any complexity until  it's  absolutely  necessary, long 
enough to point out a problem with the code we're generating.  As 
things stand now, the parser  uses D0 for the "primary" register, 
and D1 as  a place to store the partial sum.  That works fine for 
now,  because  as  long as we deal with only the "addops" '+' and 
'-', any new term can be added in as soon as it is found.  But in 
general that isn't true.  Consider, for example, the expression 
 
               1+(2-(3+(4-5))) 
                               
If we put the '1' in D1, where  do  we  put  the  '2'?    Since a 
general expression can have any degree of complexity, we're going 
to run out of registers fast! 
 
Fortunately,  there's  a  simple  solution.    Like  every modern 
microprocessor, the 68000 has a stack, which is the perfect place 
to save a variable number of items. So instead of moving the term 
in D0 to  D1, let's just push it onto the stack.  For the benefit 
of  those unfamiliar with 68000 assembler  language,  a  push  is 
written 
 
               -(SP) 
 
and a pop,     (SP)+ . 
 
 
So let's change the EmitLn in Expression to read: 
 
               EmitLn('MOVE D0,-(SP)'); 
 
and the two lines in Add and Subtract to 
 
               EmitLn('ADD (SP)+,D0') 
 
and            EmitLn('SUB (SP)+,D0'), 
 
respectively.  Now try the parser again and make sure  we haven't 
broken it. 
 
Once again, the generated code is less efficient than before, but 
it's a necessary step, as you'll see. 
 
 
MULTIPLICATION AND DIVISION 
 
Now let's get down to some REALLY serious business.  As  you  all 
know,  there  are  other  math   operators   than   "addops"  ... 
expressions can also have  multiply  and  divide operations.  You 
also  know  that  there  is  an implied operator  PRECEDENCE,  or 
hierarchy, associated with expressions, so that in  an expression 
like 
 



                    2 + 3 * 4, 
 
we know that we're supposed to multiply FIRST, then  add.    (See 
why we needed the stack?) 
 
In the early days of compiler technology, people used some rather 
complex techniques to insure that the  operator  precedence rules 
were  obeyed.    It turns out,  though,  that  none  of  this  is 
necessary ... the rules can be accommodated quite  nicely  by our 
top-down  parsing technique.  Up till now,  the  only  form  that 
we've considered for a term is that of a  single  decimal  digit. 
 
More generally, we  can  define  a  term as a PRODUCT of FACTORS; 
i.e., 
 
          <term> ::= <factor>  [ <mulop> <factor ]* 
 
What  is  a factor?  For now, it's what a term used to be  ...  a 
single digit. 
 
Notice the symmetry: a  term  has the same form as an expression. 
As a matter of fact, we can  add  to  our  parser  with  a little 
judicious  copying and renaming.  But  to  avoid  confusion,  the 
listing below is the complete set of parsing routines.  (Note the 
way we handle the reversal of operands in Divide.) 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Factor } 
 
procedure Factor; 
begin 
   EmitLn('MOVE #' + GetNum + ',D0') 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Multiply } 
 
procedure Multiply; 
begin 
   Match('*'); 
   Factor; 
   EmitLn('MULS (SP)+,D0'); 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Divide } 
 
procedure Divide; 
begin 
   Match('/'); 
   Factor; 
   EmitLn('MOVE (SP)+,D1'); 
   EmitLn('DIVS D1,D0'); 
end; 



 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Term } 
 
procedure Term; 
begin 
   Factor; 
   while Look in ['*', '/'] do begin 
      EmitLn('MOVE D0,-(SP)'); 
      case Look of 
       '*': Multiply; 
       '/': Divide; 
      else Expected('Mulop'); 
      end; 
   end; 
end; 
 
 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an Add } 
 
procedure Add; 
begin 
   Match('+'); 
   Term; 
   EmitLn('ADD (SP)+,D0'); 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Subtract } 
 
procedure Subtract; 
begin 
   Match('-'); 
   Term; 
   EmitLn('SUB (SP)+,D0'); 
   EmitLn('NEG D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
procedure Expression; 
begin 
   Term; 
   while Look in ['+', '-'] do begin 
      EmitLn('MOVE D0,-(SP)'); 
      case Look of 
       '+': Add; 
       '-': Subtract; 
      else Expected('Addop'); 
      end; 



   end; 
end; 
{--------------------------------------------------------------} 
 
 
Hot dog!  A NEARLY functional parser/translator, in only 55 lines 
of Pascal!  The output is starting to look really useful,  if you 
continue to overlook the inefficiency,  which  I  hope  you will. 
Remember, we're not trying to produce tight code here. 
 
 
PARENTHESES 
 
We  can  wrap  up this part of the parser with  the  addition  of 
parentheses with  math expressions.  As you know, parentheses are 
a  mechanism to force a desired operator  precedence.    So,  for 
example, in the expression 
 
               2*(3+4) , 
 
the parentheses force the addition  before  the  multiply.   Much 
more importantly, though, parentheses  give  us  a  mechanism for 
defining expressions of any degree of complexity, as in 
 
               (1+2)/((3+4)+(5-6)) 
 
The  key  to  incorporating  parentheses  into our parser  is  to 
realize that  no matter how complicated an expression enclosed by 
parentheses may be,  to  the  rest  of  the world it looks like a 
simple factor.  That is, one of the forms for a factor is: 
 
          <factor> ::= (<expression>) 
 
This is where the recursion comes in. An expression can contain a 
factor which contains another expression which contains a factor, 
etc., ad infinitum. 
 
Complicated or not, we can take care of this by adding just a few 
lines of Pascal to procedure Factor: 
                              
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Factor } 
 
procedure Expression; Forward; 
 
procedure Factor; 
begin 
   if Look = '(' then begin 
      Match('('); 
      Expression; 
      Match(')'); 
      end 
   else 
      EmitLn('MOVE #' + GetNum + ',D0'); 
end; 
{--------------------------------------------------------------} 



 
 
Note again how easily we can extend the parser, and how  well the 
Pascal code matches the BNF syntax. 
 
As usual, compile the new version and make sure that it correctly 
parses  legal sentences, and flags illegal  ones  with  an  error 
message. 
 
 
UNARY MINUS 
 
At  this  point,  we have a parser that can handle just about any 
expression, right?  OK, try this input sentence: 
 
                         -1 
 
WOOPS!  It doesn't work, does it?   Procedure  Expression expects 
everything to start with an integer, so it coughs up  the leading 
minus  sign.  You'll find that +3 won't  work  either,  nor  will 
something like 
 
                    -(3-2) . 
 
There  are  a  couple of ways to fix the problem.    The  easiest 
(although not necessarily the best)  way is to stick an imaginary 
leading zero in  front  of  expressions  of this type, so that -3 
becomes 0-3.  We can easily patch this into our  existing version 
of Expression: 
 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
procedure Expression; 
begin 
   if IsAddop(Look) then 
      EmitLn('CLR D0') 
   else 
      Term; 
   while IsAddop(Look) do begin 
      EmitLn('MOVE D0,-(SP)'); 
      case Look of 
       '+': Add; 
       '-': Subtract; 
      else Expected('Addop'); 
      end; 
   end; 
end; 
{--------------------------------------------------------------} 
  
 
I TOLD you that making changes  was  easy!   This time it cost us 
only  three  new lines of Pascal.   Note  the  new  reference  to 
function IsAddop.  Since the test for an addop appeared  twice, I 
chose  to  embed  it in the new function.  The  form  of  IsAddop 



should be apparent from that for IsAlpha.  Here it is: 
 
 
{--------------------------------------------------------------} 
{ Recognize an Addop } 
 
function IsAddop(c: char): boolean; 
begin 
   IsAddop := c in ['+', '-']; 
end; 
{--------------------------------------------------------------} 
 
 
OK, make these changes to the program and recompile.   You should 
also include IsAddop in your baseline copy of the cradle.   We'll 
be needing  it  again  later.   Now try the input -1 again.  Wow! 
The efficiency of the code is  pretty  poor ... six lines of code 
just for loading a simple constant ... but at least it's correct. 
Remember, we're not trying to replace Turbo Pascal here. 
 
At this point we're just about finished with the structure of our 
expression parser.   This version of the program should correctly 
parse and compile just about any expression you care to  throw at 
it.    It's still limited in that  we  can  only  handle  factors 
involving single decimal digits.    But I hope that by now you're 
starting  to  get  the  message  that we can  accomodate  further 
extensions  with  just  some  minor  changes to the parser.   You 
probably won't be  surprised  to  hear  that a variable or even a 
function call is just another kind of a factor. 
                              
In  the next session, I'll show you just how easy it is to extend 
our parser to take care of  these  things too, and I'll also show 
you just  how easily we can accomodate multicharacter numbers and 
variable names.  So you see,  we're  not  far at all from a truly 
useful parser. 
 
 
 
 
A WORD ABOUT OPTIMIZATION 
 
Earlier in this session, I promised to give you some hints  as to 
how we can improve the quality of the generated code.  As I said, 
the  production of tight code is not the  main  purpose  of  this 
series of articles.  But you need to at least know that we aren't 
just  wasting our time here ... that we  can  indeed  modify  the 
parser further to  make  it produce better code, without throwing 
away everything we've done to date.  As usual, it turns  out that 
SOME optimization is not that difficult to do ... it simply takes 
some extra code in the parser. 
 
There are two basic approaches we can take: 
 
  o Try to fix up the code after it's generated 
 
    This is  the concept of "peephole" optimization.  The general 
    idea it that we  know  what  combinations of instructions the 



    compiler  is  going  to generate, and we also know which ones 
    are pretty bad (such as the code for -1, above).    So all we 
    do  is  to   scan   the  produced  code,  looking  for  those 
    combinations, and replacing  them  by better ones.  It's sort 
    of   a   macro   expansion,   in   reverse,   and   a  fairly 
    straightforward  exercise  in   pattern-matching.   The  only 
    complication,  really, is that there may be  a  LOT  of  such 
    combinations to look for.  It's called  peephole optimization 
    simply because it only looks at a small group of instructions 
    at a time.  Peephole  optimization can have a dramatic effect 
    on  the  quality  of the code,  with  little  change  to  the 
    structure of the compiler  itself.   There is a price to pay, 
    though,  in  both  the  speed,   size, and complexity of  the 
    compiler.  Looking for all those combinations calls for a lot 
    of IF tests, each one of which is a source of error.  And, of 
    course, it takes time. 
 
     In  the  classical  implementation  of a peephole optimizer, 
    it's done as a second pass to the compiler.  The  output code 
    is  written  to  disk,  and  then  the  optimizer  reads  and 
    processes the disk file again.  As a matter of fact,  you can 
    see that the optimizer could  even be a separate PROGRAM from 
    the compiler proper.  Since the optimizer only  looks  at the 
    code through a  small  "window"  of  instructions  (hence the 
    name), a better implementation would be to simply buffer up a 
    few lines of output, and scan the buffer after each EmitLn. 
 
  o Try to generate better code in the first place 
                              
    This approach calls for us to look for  special  cases BEFORE 
    we Emit them.  As a trivial example,  we  should  be  able to 
    identify a constant zero,  and  Emit a CLR instead of a load, 
    or even do nothing at all, as in an add of zero, for example. 
    Closer to home, if we had chosen to recognize the unary minus 
    in Factor  instead of in Expression, we could treat constants 
    like -1 as ordinary constants,  rather  then  generating them 
    from  positive  ones.   None of these things are difficult to 
    deal with ... they only add extra tests in the code, which is 
    why  I  haven't  included them in our program.  The way I see 
    it, once we get to the point that we have a working compiler, 
    generating useful code  that  executes, we can always go back 
    and tweak the thing to tighten up the code produced.   That's 
    why there are Release 2.0's in the world. 
 
There IS one more type  of  optimization  worth  mentioning, that 
seems to promise pretty tight code without too much hassle.  It's 
my "invention" in the  sense  that I haven't seen it suggested in 
print anywhere, though I have  no  illusions  that  it's original 
with me. 
 
This  is to avoid such a heavy use of the stack, by making better 
use of the CPU registers.  Remember back when we were  doing only 
addition  and  subtraction,  that we used registers  D0  and  D1, 
rather than the stack?  It worked, because with  only  those  two 
operations, the "stack" never needs more than two entries. 
 
Well,  the 68000 has eight data registers.  Why not use them as a 



privately managed stack?  The key is to recognize  that,  at  any 
point in its processing,  the  parser KNOWS how many items are on 
the  stack, so it can indeed manage it properly.  We can define a 
private "stack pointer" that keeps  track  of  which  stack level 
we're at, and addresses the  corresponding  register.   Procedure 
Factor,  for  example,  would  not  cause data to be loaded  into 
register  D0,  but   into  whatever  the  current  "top-of-stack" 
register happened to be. 
 
What we're doing in effect is to replace the CPU's RAM stack with 
a  locally  managed  stack  made  up  of  registers.    For  most 
expressions, the stack level  will  never  exceed eight, so we'll 
get pretty good code out.  Of course, we also  have  to deal with 
those  odd cases where the stack level  DOES  exceed  eight,  but 
that's no problem  either.    We  simply let the stack spill over 
into the CPU  stack.    For  levels  beyond eight, the code is no 
worse  than  what  we're generating now, and for levels less than 
eight, it's considerably better. 
 
For the record, I  have  implemented  this  concept, just to make 
sure  it  works  before  I  mentioned  it to you.  It does.    In 
practice, it turns out that you can't really use all eight levels 
... you need at least one register free to  reverse  the  operand 
order for division  (sure  wish  the  68000 had an XTHL, like the 
8080!).  For expressions  that  include  function calls, we would 
also need a register reserved for them. Still, there  is  a  nice 
improvement in code size for most expressions. 
 
So, you see, getting  better  code  isn't  that difficult, but it 
does add complexity to the our translator ...  complexity  we can 
do without at this point.  For that reason,  I  STRONGLY  suggest 
that we continue to ignore efficiency issues for the rest of this 
series,  secure  in  the knowledge that we can indeed improve the 
code quality without throwing away what we've done. 
 
Next lesson, I'll show you how to deal with variables factors and 
function calls.  I'll also show you just how easy it is to handle 
multicharacter tokens and embedded white space. 
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INTRODUCTION 
 
In the last installment, we examined the techniques used to parse 
and  translate a general math expression.  We  ended  up  with  a 
simple parser that  could handle arbitrarily complex expressions, 
with two restrictions: 
 
  o No variables were allowed, only numeric factors 
 
  o The numeric factors were limited to single digits 
 
In this installment, we'll get  rid of those restrictions.  We'll 
also extend what  we've  done  to  include  assignment statements 
function  calls  and.    Remember,   though,   that   the  second 
restriction was  mainly self-imposed  ... a choice of convenience 



on our part, to make life easier and to let us concentrate on the 
fundamental concepts.    As  you'll  see  in  a bit, it's an easy 
restriction to get rid of, so don't get  too  hung  up  about it. 
We'll use the trick when it serves us to do so, confident that we 
can discard it when we're ready to. 
 
 
VARIABLES 
 
Most expressions  that we see in practice involve variables, such 
as 
 
               b * b + 4 * a * c 
 
No  parser is much good without being able  to  deal  with  them. 
Fortunately, it's also quite easy to do. 
 
Remember that in our parser as it currently stands, there are two 
kinds of  factors  allowed:  integer  constants  and  expressions 
within parentheses.  In BNF notation, 
 
     <factor> ::= <number> | (<expression>) 
 
The '|' stands for "or", meaning of course that either form  is a 
legal form for a factor.   Remember,  too, that we had no trouble 
knowing which was which  ...  the  lookahead  character is a left 
paren '(' in one case, and a digit in the other. 
                               
It probably won't come as too much of a surprise that  a variable 
is just another kind of factor.    So  we extend the BNF above to 
read: 
 
 
     <factor> ::= <number> | (<expression>) | <variable> 
 
 
Again, there is no  ambiguity:  if  the  lookahead character is a 
letter,  we  have  a variable; if a digit, we have a number. Back 
when we translated the number, we just issued code  to  load  the 
number,  as immediate data, into D0.  Now we do the same, only we 
load a variable. 
 
A minor complication in the  code generation arises from the fact 
that most  68000 operating systems, including the SK*DOS that I'm 
using, require the code to be  written  in "position-independent" 
form, which  basically means that everything is PC-relative.  The 
format for a load in this language is 
 
               MOVE X(PC),D0 
 
where X is, of course, the variable name.  Armed with that, let's 
modify the current version of Factor to read: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Factor } 
 



procedure Expression; Forward; 
 
procedure Factor; 
begin 
   if Look = '(' then begin 
      Match('('); 
      Expression; 
      Match(')'); 
      end 
   else if IsAlpha(Look) then 
      EmitLn('MOVE ' + GetName + '(PC),D0') 
   else 
      EmitLn('MOVE #' + GetNum + ',D0'); 
end; 
{--------------------------------------------------------------} 
 
 
I've  remarked before how easy it is to  add  extensions  to  the 
parser, because of  the  way  it's  structured.  You can see that 
this  still  holds true here.  This time it cost us  all  of  two 
extra lines of code.  Notice, too, how the if-else-else structure 
exactly parallels the BNF syntax equation. 
 
OK, compile and test this new version of the parser.  That didn't 
hurt too badly, did it? 
                               
 
FUNCTIONS 
 
There is only one  other  common kind of factor supported by most 
languages: the function call.  It's really too early  for  us  to 
deal with functions well,  because  we  haven't yet addressed the 
issue of parameter passing.  What's more, a "real" language would 
include a mechanism to  support  more than one type, one of which 
should be a function type.  We haven't gotten there  yet, either. 
But I'd still like to deal with functions  now  for  a  couple of 
reasons.    First,  it  lets  us  finally  wrap  up the parser in 
something very close to its final form, and second, it  brings up 
a new issue which is very much worth talking about. 
 
Up  till  now,  we've  been  able  to  write  what  is  called  a 
"predictive parser."  That  means  that at any point, we can know 
by looking at the current  lookahead character exactly what to do 
next.  That isn't the case when we add functions.  Every language 
has some naming rules  for  what  constitutes a legal identifier. 
For the present, ours is simply that it  is  one  of  the letters 
'a'..'z'.  The  problem  is  that  a variable name and a function 
name obey  the  same  rules.   So how can we tell which is which? 
One way is to require that they each be declared before  they are 
used.    Pascal  takes that approach.  The other is that we might 
require a function to be followed by a (possibly empty) parameter 
list.  That's the rule used in C. 
 
Since  we  don't  yet have a mechanism for declaring types, let's 
use the C  rule for now.  Since we also don't have a mechanism to 
deal  with parameters, we can only handle  empty  lists,  so  our 
function calls will have the form 



 
                    x()  . 
 
Since  we're  not  dealing  with  parameter lists yet,  there  is 
nothing  to do but to call the function, so we need only to issue 
a BSR (call) instead of a MOVE. 
 
Now that there are two  possibilities for the "If IsAlpha" branch 
of the test in Factor, let's treat them in a  separate procedure. 
Modify Factor to read: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Factor } 
 
procedure Expression; Forward; 
 
procedure Factor; 
begin 
   if Look = '(' then begin 
      Match('('); 
      Expression; 
      Match(')'); 
      end 
   else if IsAlpha(Look) then 
      Ident 
   else 
      EmitLn('MOVE #' + GetNum + ',D0'); 
end; 
{--------------------------------------------------------------} 
 
 
and insert before it the new procedure 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Identifier } 
 
procedure Ident; 
var Name: char; 
begin 
   Name := GetName; 
   if Look = '(' then begin 
      Match('('); 
      Match(')'); 
      EmitLn('BSR ' + Name); 
      end 
   else 
      EmitLn('MOVE ' + Name + '(PC),D0') 
end; 
{---------------------------------------------------------------} 
 
 
OK, compile and  test  this  version.  Does  it  parse  all legal 
expressions?  Does it correctly flag badly formed ones? 
 
The important thing to notice is that even though  we  no  longer 



have  a predictive parser, there is  little  or  no  complication 
added with the recursive descent approach that we're  using.   At 
the point where  Factor  finds an identifier (letter), it doesn't 
know whether it's a variable name or a function name, nor does it 
really care.  It simply passes it on to Ident and leaves it up to 
that procedure to figure it out.  Ident, in  turn,  simply  tucks 
away the identifier and then reads one more  character  to decide 
which kind of identifier it's dealing with. 
 
Keep this approach in mind.  It's a very powerful concept, and it 
should be used  whenever  you  encounter  an  ambiguous situation 
requiring further lookahead.   Even  if  you  had to look several 
tokens ahead, the principle would still work. 
 
 
MORE ON ERROR HANDLING 
 
As long as we're talking  philosophy,  there's  another important 
issue to point out:  error  handling.    Notice that although the 
parser correctly rejects (almost)  every malformed  expression we 
can  throw at it, with a meaningful  error  message,  we  haven't 
really had to  do much work to make that happen.  In fact, in the 
whole parser per se (from  Ident  through  Expression)  there are 
only two calls to the error routine, Expected.  Even those aren't 
necessary ... if you'll look again in Term and Expression, you'll 
see that those statements can't be reached.  I put them  in early 
on as a  bit  of  insurance,  but  they're no longer needed.  Why 
don't you delete them now? 
 
So how did we get this nice error handling  virtually  for  free? 
It's simply  that  I've  carefully  avoided  reading  a character 
directly  using  GetChar.  Instead,  I've  relied  on  the  error 
handling in GetName,  GetNum,  and  Match  to  do  all  the error 
checking for me.    Astute  readers  will notice that some of the 
calls to Match (for example, the ones in Add  and  Subtract)  are 
also unnecessary ... we already know what the character is by the 
time  we get there ... but it maintains  a  certain  symmetry  to 
leave them in, and  the  general rule to always use Match instead 
of GetChar is a good one. 
 
I mentioned an "almost" above.   There  is a case where our error 
handling  leaves a bit to be desired.  So far we haven't told our 
parser what and  end-of-line  looks  like,  or  what  to  do with 
embedded  white  space.  So  a  space  character  (or  any  other 
character not part of the recognized character set) simply causes 
the parser to terminate, ignoring the unrecognized characters. 
 
It  could  be  argued  that  this is reasonable behavior at  this 
point.  In a "real"  compiler, there is usually another statement 
following the one we're working on, so any characters not treated 
as part of our expression will either be used for or  rejected as 
part of the next one. 
 
But  it's  also a very easy thing to fix up, even  if  it's  only 
temporary.   All  we  have  to  do  is assert that the expression 
should end with an end-of-line , i.e., a carriage return. 
 



To see what I'm talking about, try the input line 
 
               1+2 <space> 3+4 
 
See  how the space was treated as a terminator?  Now, to make the 
compiler properly flag this, add the line 
 
               if Look <> CR then Expected('Newline'); 
 
in the main  program,  just  after  the call to Expression.  That 
catches anything left over in the input stream.  Don't  forget to 
define CR in the const statement: 
 
               CR = ^M; 
 
As usual, recompile the program and verify that it does what it's 
supposed to. 
 
 
ASSIGNMENT STATEMENTS 
 
OK,  at  this  point we have a parser that works very nicely. I'd 
like to  point  out  that  we  got  it  using  only  88  lines of 
executable code, not  counting  what  was  in  the  cradle.   The 
compiled  object  file  is  a  whopping  4752  bytes.   Not  bad, 
considering we weren't trying very  hard  to  save  either source 
code or object size.  We just stuck to the KISS principle. 
 
Of course, parsing an expression  is not much good without having 
something to do with it afterwards.  Expressions USUALLY (but not 
always) appear in assignment statements, in the form 
 
          <Ident> = <Expression> 
 
We're only a breath  away  from being able to parse an assignment 
statement, so let's take that  last  step.  Just  after procedure 
Expression, add the following new procedure: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment; 
var Name: char; 
begin 
   Name := GetName; 
   Match('='); 
   Expression; 
   EmitLn('LEA ' + Name + '(PC),A0'); 
   EmitLn('MOVE D0,(A0)') 
end; 
{--------------------------------------------------------------} 
 
 
Note again that the  code  exactly parallels the BNF.  And notice 
further that  the error checking was painless, handled by GetName 
and Match. 



 
The reason for the two  lines  of  assembler  has  to  do  with a 
peculiarity in the  68000,  which requires this kind of construct 
for PC-relative code. 
 
Now change the call to Expression, in the main program, to one to 
Assignment.  That's all there is to it. 
 
Son of a gun!  We are actually  compiling  assignment statements. 
If those were the only kind of statements in a language, all we'd 
have to  do  is  put  this in a loop and we'd have a full-fledged 
compiler! 
 
Well, of course they're not the only kind.  There are also little 
items  like  control  statements  (IFs  and  loops),  procedures, 
declarations, etc.  But cheer  up.    The  arithmetic expressions 
that we've been dealing with are among the most challenging  in a 
language.      Compared  to  what  we've  already  done,  control 
statements  will be easy.  I'll be covering  them  in  the  fifth 
installment.  And the other statements will all fall in  line, as 
long as we remember to KISS. 
 
 
MULTI-CHARACTER TOKENS 
 
Throughout  this   series,   I've   been   carefully  restricting 
everything  we  do  to  single-character  tokens,  all  the while 
assuring  you  that  it wouldn't be difficult to extend to multi- 
character ones.    I  don't  know if you believed me or not ... I 
wouldn't  really blame you if you were a  bit  skeptical.    I'll 
continue  to use  that approach in  the  sessions  which  follow, 
because it helps keep complexity away.    But I'd like to back up 
those  assurances, and wrap up this portion  of  the  parser,  by 
showing you  just  how  easy  that  extension  really is.  In the 
process, we'll also provide for embedded white space.  Before you 
make  the  next  few changes, though, save the current version of 
the parser away under another name.  I have some more uses for it 
in  the  next  installment, and we'll be working with the single- 
character version. 
 
Most compilers separate out the handling of the input stream into 
a separate module called  the  lexical scanner.  The idea is that 
the scanner deals with all the character-by-character  input, and 
returns the separate units  (tokens)  of  the  stream.  There may 
come a time when we'll want  to  do something like that, too, but 
for  now  there  is  no  need. We can handle the  multi-character 
tokens that we need by very slight and  very  local modifications 
to GetName and GetNum. 
 
The usual definition of an identifier is that the first character 
must be a letter, but the rest can be  alphanumeric  (letters  or 
numbers).  To  deal  with  this,  we  need  one  other recognizer 
function 
 
 
{--------------------------------------------------------------} 
{ Recognize an Alphanumeric } 



 
function IsAlNum(c: char): boolean; 
begin 
   IsAlNum := IsAlpha(c) or IsDigit(c); 
end; 
{--------------------------------------------------------------} 
 
 
Add this function to your parser.  I put mine just after IsDigit. 
While you're  at  it,  might  as  well  include it as a permanent 
member of Cradle, too. 
                               
Now, we need  to  modify  function  GetName  to  return  a string 
instead of a character: 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
function GetName: string; 
var Token: string; 
begin 
   Token := ''; 
   if not IsAlpha(Look) then Expected('Name'); 
   while IsAlNum(Look) do begin 
      Token := Token + UpCase(Look); 
      GetChar; 
   end; 
   GetName := Token; 
end; 
{--------------------------------------------------------------} 
 
 
Similarly, modify GetNum to read: 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNum: string; 
var Value: string; 
begin 
   Value := ''; 
   if not IsDigit(Look) then Expected('Integer'); 
   while IsDigit(Look) do begin 
      Value := Value + Look; 
      GetChar; 
   end; 
   GetNum := Value; 
end; 
{--------------------------------------------------------------} 
 
 
Amazingly enough, that  is  virtually all the changes required to 
the  parser!  The local variable Name  in  procedures  Ident  and 
Assignment was originally declared as  "char",  and  must  now be 
declared string[8].  (Clearly,  we  could  make the string length 



longer if we chose, but most assemblers limit the length anyhow.) 
Make  this  change,  and  then  recompile and test. _NOW_ do  you 
believe that it's a simple change? 
 
 
WHITE SPACE 
 
Before we leave this parser for awhile, let's  address  the issue 
of  white  space.   As it stands now, the parser  will  barf  (or 
simply terminate) on a single space  character  embedded anywhere 
in  the input stream.  That's pretty  unfriendly  behavior.    So 
let's "productionize" the thing  a  bit  by eliminating this last 
restriction. 
 
The  key  to easy handling of white space is to come  up  with  a 
simple rule for how the parser should treat the input stream, and 
to  enforce that rule everywhere.  Up  till  now,  because  white 
space wasn't permitted, we've been able to assume that after each 
parsing action, the lookahead character  Look  contains  the next 
meaningful  character,  so  we could test it  immediately.    Our 
design was based upon this principle. 
 
It still sounds like a good rule to me, so  that's  the one we'll 
use.    This  means  that  every routine that advances the  input 
stream must skip over white space, and leave  the  next non-white 
character in Look.   Fortunately,  because  we've been careful to 
use GetName, GetNum, and Match  for most of our input processing, 
it is  only  those  three  routines  (plus  Init) that we need to 
modify. 
 
Not  surprisingly,  we  start  with  yet  another  new recognizer 
routine: 
 
 
{--------------------------------------------------------------} 
{ Recognize White Space } 
 
function IsWhite(c: char): boolean; 
begin 
   IsWhite := c in [' ', TAB]; 
end; 
{--------------------------------------------------------------} 
 
 
We  also need a routine that  will  eat  white-space  characters, 
until it finds a non-white one: 
 
 
{--------------------------------------------------------------} 
{ Skip Over Leading White Space } 
 
procedure SkipWhite; 
begin 
   while IsWhite(Look) do 
      GetChar; 
end; 
{--------------------------------------------------------------} 



 
 
Now,  add calls to SkipWhite to Match,  GetName,  and  GetNum  as 
shown below: 
 
 
{--------------------------------------------------------------} 
{ Match a Specific Input Character } 
 
procedure Match(x: char); 
begin 
   if Look <> x then Expected('''' + x + '''') 
   else begin 
      GetChar; 
      SkipWhite; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
function GetName: string; 
var Token: string; 
begin 
   Token := ''; 
   if not IsAlpha(Look) then Expected('Name'); 
   while IsAlNum(Look) do begin 
      Token := Token + UpCase(Look); 
      GetChar; 
   end; 
   GetName := Token; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNum: string; 
var Value: string; 
begin 
   Value := ''; 
   if not IsDigit(Look) then Expected('Integer'); 
   while IsDigit(Look) do begin 
      Value := Value + Look; 
      GetChar; 
   end; 
   GetNum := Value; 
   SkipWhite; 
end; 
{--------------------------------------------------------------} 
 
(Note  that  I  rearranged  Match  a  bit,  without changing  the 
functionality.) 
 
Finally, we need to skip over leading blanks where we  "prime the 



pump" in Init: 
                              
{--------------------------------------------------------------} 
{ Initialize } 
 
procedure Init; 
begin 
   GetChar; 
   SkipWhite; 
end; 
{--------------------------------------------------------------} 
 
 
Make these changes and recompile the program.  You will find that 
you will have to move Match below SkipWhite, to  avoid  an  error 
message from the Pascal compiler.  Test the program as  always to 
make sure it works properly. 
 
Since we've made quite  a  few  changes  during this session, I'm 
reproducing the entire parser below: 
 
 
{--------------------------------------------------------------} 
program parse; 
 
{--------------------------------------------------------------} 
{ Constant Declarations } 
 
const TAB = ^I; 
       CR = ^M; 
 
{--------------------------------------------------------------} 
{ Variable Declarations } 
 
var Look: char;              { Lookahead Character } 
 
{--------------------------------------------------------------} 
{ Read New Character From Input Stream } 
 
procedure GetChar; 
begin 
   Read(Look); 
end; 
 
{--------------------------------------------------------------} 
{ Report an Error } 
 
procedure Error(s: string); 
begin 
   WriteLn; 
   WriteLn(^G, 'Error: ', s, '.'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Report Error and Halt } 
                              



procedure Abort(s: string); 
begin 
   Error(s); 
   Halt; 
end; 
 
 
{--------------------------------------------------------------} 
{ Report What Was Expected } 
 
procedure Expected(s: string); 
begin 
   Abort(s + ' Expected'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an Alpha Character } 
 
function IsAlpha(c: char): boolean; 
begin 
   IsAlpha := UpCase(c) in ['A'..'Z']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Decimal Digit } 
 
function IsDigit(c: char): boolean; 
begin 
   IsDigit := c in ['0'..'9']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an Alphanumeric } 
 
function IsAlNum(c: char): boolean; 
begin 
   IsAlNum := IsAlpha(c) or IsDigit(c); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an Addop } 
 
function IsAddop(c: char): boolean; 
begin 
   IsAddop := c in ['+', '-']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize White Space } 
                              
function IsWhite(c: char): boolean; 
begin 



   IsWhite := c in [' ', TAB]; 
end; 
 
 
{--------------------------------------------------------------} 
{ Skip Over Leading White Space } 
 
procedure SkipWhite; 
begin 
   while IsWhite(Look) do 
      GetChar; 
end; 
 
 
{--------------------------------------------------------------} 
{ Match a Specific Input Character } 
 
procedure Match(x: char); 
begin 
   if Look <> x then Expected('''' + x + '''') 
   else begin 
      GetChar; 
      SkipWhite; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
function GetName: string; 
var Token: string; 
begin 
   Token := ''; 
   if not IsAlpha(Look) then Expected('Name'); 
   while IsAlNum(Look) do begin 
      Token := Token + UpCase(Look); 
      GetChar; 
   end; 
   GetName := Token; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNum: string; 
var Value: string; 
begin 
   Value := ''; 
   if not IsDigit(Look) then Expected('Integer'); 
   while IsDigit(Look) do begin 
      Value := Value + Look; 
      GetChar; 
   end; 
   GetNum := Value; 



   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Output a String with Tab } 
 
procedure Emit(s: string); 
begin 
   Write(TAB, s); 
end; 
 
 
{--------------------------------------------------------------} 
{ Output a String with Tab and CRLF } 
 
procedure EmitLn(s: string); 
begin 
   Emit(s); 
   WriteLn; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Identifier } 
 
procedure Ident; 
var Name: string[8]; 
begin 
   Name:= GetName; 
   if Look = '(' then begin 
      Match('('); 
      Match(')'); 
      EmitLn('BSR ' + Name); 
      end 
   else 
      EmitLn('MOVE ' + Name + '(PC),D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Factor } 
 
procedure Expression; Forward; 
 
procedure Factor; 
begin 
   if Look = '(' then begin 
      Match('('); 
      Expression; 
      Match(')'); 
      end 
   else if IsAlpha(Look) then 
      Ident 
   else 
      EmitLn('MOVE #' + GetNum + ',D0'); 
end; 



 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Multiply } 
 
procedure Multiply; 
begin 
   Match('*'); 
   Factor; 
   EmitLn('MULS (SP)+,D0'); 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Divide } 
 
procedure Divide; 
begin 
   Match('/'); 
   Factor; 
   EmitLn('MOVE (SP)+,D1'); 
   EmitLn('EXS.L D0'); 
   EmitLn('DIVS D1,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Term } 
 
procedure Term; 
begin 
   Factor; 
   while Look in ['*', '/'] do begin 
      EmitLn('MOVE D0,-(SP)'); 
      case Look of 
       '*': Multiply; 
       '/': Divide; 
      end; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an Add } 
 
procedure Add; 
begin 
   Match('+'); 
   Term; 
   EmitLn('ADD (SP)+,D0'); 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Subtract } 
 
procedure Subtract; 



begin 
   Match('-'); 
   Term; 
   EmitLn('SUB (SP)+,D0'); 
   EmitLn('NEG D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
procedure Expression; 
begin 
   if IsAddop(Look) then 
      EmitLn('CLR D0') 
   else 
      Term; 
   while IsAddop(Look) do begin 
      EmitLn('MOVE D0,-(SP)'); 
      case Look of 
       '+': Add; 
       '-': Subtract; 
      end; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment; 
var Name: string[8]; 
begin 
   Name := GetName; 
   Match('='); 
   Expression; 
   EmitLn('LEA ' + Name + '(PC),A0'); 
   EmitLn('MOVE D0,(A0)') 
end; 
 
 
{--------------------------------------------------------------} 
{ Initialize } 
                              
procedure Init; 
begin 
   GetChar; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
   Init; 
   Assignment; 



   If Look <> CR then Expected('NewLine'); 
end. 
{--------------------------------------------------------------} 
 
 
Now the parser is complete.  It's got every feature we can put in 
a  one-line "compiler."  Tuck it away in a safe place.  Next time 
we'll move on to a new subject, but we'll still be  talking about 
expressions for quite awhile.  Next installment, I plan to talk a 
bit about interpreters as opposed  to compilers, and show you how 
the structure of the parser changes a bit as we change  what sort 
of action has to be taken.  The information we pick up there will 
serve  us in good stead later on, even if you have no interest in 
interpreters.  See you next time. 
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INTRODUCTION 
 
In the first three installments of this series,  we've  looked at 
parsing and  compiling math expressions, and worked our way grad- 
ually and methodically from dealing  with  very  simple one-term, 
one-character "expressions" up through more general ones, finally 
arriving at a very complete parser that could parse and translate 
complete  assignment  statements,  with  multi-character  tokens, 
embedded white space, and function calls.  This  time,  I'm going 
to walk you through the process one more time, only with the goal 
of interpreting rather than compiling object code. 
 
Since this is a series on compilers, why should  we  bother  with 
interpreters?  Simply because I want you to see how the nature of 
the  parser changes as we change the goals.  I also want to unify 
the concepts of the two types of translators, so that you can see 
not only the differences, but also the similarities. 
 
Consider the assignment statement 
 
               x = 2 * y + 3 
 
In a compiler, we want the target CPU to execute  this assignment 
at EXECUTION time.  The translator itself doesn't  do  any arith- 
metic ... it only issues the object code that will cause  the CPU 
to do it when the code is executed.  For  the  example above, the 
compiler would issue code to compute the expression and store the 
results in variable x. 
 
For an interpreter,  on  the  other  hand, no object code is gen- 
erated.   Instead, the arithmetic is computed immediately, as the 
parsing is going on.  For the example, by the time parsing of the 
statement is complete, x will have a new value. 
 
The approach we've been  taking  in  this  whole series is called 
"syntax-driven translation."  As you are aware by now, the struc- 
ture of the  parser  is  very  closely  tied to the syntax of the 
productions we parse.  We  have built Pascal procedures that rec- 



ognize every language  construct.   Associated with each of these 
constructs (and procedures) is  a  corresponding  "action," which 
does  whatever  makes  sense to do  once  a  construct  has  been 
recognized.    In  our  compiler  so far, every  action  involves 
emitting object code, to be executed later at execution time.  In 
an interpreter, every action  involves  something  to be done im- 
mediately. 
 
What I'd like you to see here is that the  layout  ... the struc- 
ture ... of  the  parser  doesn't  change.  It's only the actions 
that change.   So  if  you  can  write an interpreter for a given 
language, you can also write a compiler, and vice versa.  Yet, as 
you  will  see,  there  ARE  differences,  and  significant ones. 
Because the actions are different,  the  procedures  that  do the 
recognizing end up being written differently.    Specifically, in 
the interpreter  the recognizing procedures end up being coded as 
FUNCTIONS that return numeric values to their callers.    None of 
the parsing routines for our compiler did that. 
 
Our compiler, in fact,  is  what we might call a "pure" compiler. 
Each time a construct is recognized, the object  code  is emitted 
IMMEDIATELY.  (That's one reason the code is not very efficient.) 
The interpreter we'll be building  here is a pure interpreter, in 
the sense that there is  no  translation,  such  as "tokenizing," 
performed on the source code.  These represent  the  two extremes 
of translation.  In  the  real  world,  translators are rarely so 
pure, but tend to have bits of each technique. 
 
I can think of  several  examples.    I've already mentioned one: 
most interpreters, such as Microsoft BASIC,  for  example, trans- 
late the source code (tokenize it) into an  intermediate  form so 
that it'll be easier to parse real time. 
 
Another example is an assembler.  The purpose of an assembler, of 
course, is to produce object code, and it normally does that on a 
one-to-one basis: one object instruction per line of source code. 
But almost every assembler also permits expressions as arguments. 
In this case, the expressions  are  always  constant expressions, 
and  so the assembler isn't supposed to  issue  object  code  for 
them.  Rather,  it  "interprets" the expressions and computes the 
corresponding constant result, which is what it actually emits as 
object code. 
 
As a matter of fact, we  could  use  a bit of that ourselves. The 
translator we built in the  previous  installment  will dutifully 
spit out object code  for  complicated  expressions,  even though 
every term in  the  expression  is  a  constant.  In that case it 
would be far better if the translator behaved a bit more  like an 
interpreter, and just computed the equivalent constant result. 
 
There is  a concept in compiler theory called "lazy" translation. 
The  idea is that you typically don't just  emit  code  at  every 
action.  In fact, at the extreme you don't emit anything  at all, 
until  you  absolutely  have to.  To accomplish this, the actions 
associated with the parsing routines  typically  don't  just emit 
code.  Sometimes  they  do,  but  often  they  simply  return in- 
formation back to the caller.  Armed with  such  information, the 



caller can then make a better choice of what to do. 
 
For example, given the statement 
 
               x = x + 3 - 2 - (5 - 4)  , 
 
our compiler will dutifully spit  out a stream of 18 instructions 
to load each parameter into  registers,  perform  the arithmetic, 
and store the result.  A lazier evaluation  would  recognize that 
the arithmetic involving constants can  be  evaluated  at compile 
time, and would reduce the expression to 
 
               x = x + 0  . 
 
An  even  lazier  evaluation would then be smart enough to figure 
out that this is equivalent to 
 
               x = x  , 
 
which  calls  for  no  action  at  all.   We could reduce 18  in- 
structions to zero! 
 
Note that there is no chance of optimizing this way in our trans- 
lator as it stands, because every action takes place immediately. 
 
Lazy  expression  evaluation  can  produce  significantly  better 
object code than  we  have  been  able  to  so  far.  I warn you, 
though: it complicates the parser code considerably, because each 
routine now has to make decisions as to whether  to  emit  object 
code or not.  Lazy evaluation is certainly not named that because 
it's easier on the compiler writer! 
 
Since we're operating mainly on  the KISS principle here, I won't 
go  into much more depth on this subject.  I just want you to  be 
aware  that  you  can get some code optimization by combining the 
techniques of compiling and  interpreting.    In  particular, you 
should know that the parsing  routines  in  a  smarter translator 
will generally  return  things  to  their  caller,  and sometimes 
expect things as  well.    That's  the main reason for going over 
interpretation in this installment. 
 
 
THE INTERPRETER 
 
OK, now that you know WHY we're going into all this, let's do it. 
Just to give you practice, we're going to start over with  a bare 
cradle and build up the translator all over again.  This time, of 
course, we can go a bit faster. 
 
Since we're now going  to  do arithmetic, the first thing we need 
to do is to change function GetNum, which up till now  has always 
returned a character  (or  string).    Now, it's better for it to 
return an integer.    MAKE  A  COPY of the cradle (for goodness's 
sake, don't change the version  in  Cradle  itself!!)  and modify 
GetNum as follows: 
 
 



{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNum: integer; 
begin 
   if not IsDigit(Look) then Expected('Integer'); 
   GetNum := Ord(Look) - Ord('0'); 
   GetChar; 
end; 
{--------------------------------------------------------------} 
 
 
Now, write the following version of Expression: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
function Expression: integer; 
begin 
   Expression := GetNum; 
end; 
{--------------------------------------------------------------} 
 
 
Finally, insert the statement 
 
 
   Writeln(Expression); 
 
 
at the end of the main program.  Now compile and test. 
 
All this program  does  is  to  "parse"  and  translate  a single 
integer  "expression."    As always, you should make sure that it 
does that with the digits 0..9, and gives an  error  message  for 
anything else.  Shouldn't take you very long! 
 
OK, now let's extend this to include addops.    Change Expression 
to read: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
function Expression: integer; 
var Value: integer; 
begin 
   if IsAddop(Look) then 
      Value := 0 
   else 
      Value := GetNum; 
   while IsAddop(Look) do begin 
      case Look of 
       '+': begin 
               Match('+'); 
               Value := Value + GetNum; 



            end; 
       '-': begin 
               Match('-'); 
               Value := Value - GetNum; 
            end; 
      end; 
   end; 
   Expression := Value; 
end; 
{--------------------------------------------------------------} 
 
 
The structure of Expression, of  course,  parallels  what  we did 
before,  so  we  shouldn't have too much  trouble  debugging  it. 
There's  been  a  SIGNIFICANT  development, though, hasn't there? 
Procedures Add and Subtract went away!  The reason  is  that  the 
action to be taken  requires  BOTH arguments of the operation.  I 
could have chosen to retain the procedures and pass into them the 
value of the expression to date,  which  is Value.  But it seemed 
cleaner to me to  keep  Value as strictly a local variable, which 
meant that the code for Add and Subtract had to be moved in line. 
This result suggests  that,  while the structure we had developed 
was nice and  clean  for our simple-minded translation scheme, it 
probably  wouldn't do for use with lazy  evaluation.    That's  a 
little tidbit we'll probably want to keep in mind for later. 
 
OK,  did the translator work?  Then let's  take  the  next  step. 
It's not hard to  figure  out what procedure Term should now look 
like.  Change every call to GetNum in function  Expression  to  a 
call to Term, and then enter the following form for Term: 
 
 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Term } 
 
function Term: integer; 
var Value: integer; 
begin 
   Value := GetNum; 
   while Look in ['*', '/'] do begin 
      case Look of 
       '*': begin 
               Match('*'); 
               Value := Value * GetNum; 
            end; 
       '/': begin 
               Match('/'); 
               Value := Value div GetNum; 
            end; 
      end; 
   end; 
   Term := Value; 
end; 
{--------------------------------------------------------------} 
 



Now, try it out.    Don't forget two things: first, we're dealing 
with integer division, so, for example, 1/3 should come out zero. 
Second, even  though we can output multi-digit results, our input 
is still restricted to single digits. 
 
That seems like a silly restriction at this point, since  we have 
already  seen how easily function GetNum can  be  extended.    So 
let's go ahead and fix it right now.  The new version is 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNum: integer; 
var Value: integer; 
begin 
   Value := 0; 
   if not IsDigit(Look) then Expected('Integer'); 
   while IsDigit(Look) do begin 
      Value := 10 * Value + Ord(Look) - Ord('0'); 
      GetChar; 
   end; 
   GetNum := Value; 
end; 
{--------------------------------------------------------------} 
 
 
If you've compiled and  tested  this  version of the interpreter, 
the  next  step  is to install function Factor, complete with pa- 
renthesized  expressions.  We'll hold off a  bit  longer  on  the 
variable  names.    First, change the references  to  GetNum,  in 
function Term, so that they call Factor instead.   Now  code  the 
following version of Factor: 
 
 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Factor } 
 
function Expression: integer; Forward; 
 
function Factor: integer; 
begin 
   if Look = '(' then begin 
      Match('('); 
      Factor := Expression; 
      Match(')'); 
      end 
   else 
       Factor := GetNum; 
end; 
{---------------------------------------------------------------} 
 
That was pretty easy, huh?  We're rapidly closing in on  a useful 
interpreter. 
 



 
A LITTLE PHILOSOPHY 
 
Before going any further, there's something I'd like  to  call to 
your attention.  It's a concept that we've been making use  of in 
all these sessions, but I haven't explicitly mentioned it up till 
now.  I think it's time, because it's a concept so useful, and so 
powerful,  that  it  makes all the difference  between  a  parser 
that's trivially easy, and one that's too complex to deal with. 
 
In the early days of compiler technology, people  had  a terrible 
time  figuring  out  how to deal with things like operator prece- 
dence  ...  the  way  that  multiply  and  divide operators  take 
precedence over add and subtract, etc.  I remember a colleague of 
some  thirty years ago, and how excited he was to find out how to 
do it.  The technique used involved building two  stacks,    upon 
which you pushed each operator  or operand.  Associated with each 
operator was a precedence level,  and the rules required that you 
only actually performed an operation  ("reducing"  the  stack) if 
the precedence level showing on top of the stack was correct.  To 
make life more interesting,  an  operator  like ')' had different 
precedence levels, depending  upon  whether or not it was already 
on the stack.  You  had to give it one value before you put it on 
the stack, and another to decide when to take it  off.   Just for 
the experience, I worked all of  this  out for myself a few years 
ago, and I can tell you that it's very tricky. 
 
We haven't  had  to  do  anything like that.  In fact, by now the 
parsing of an arithmetic statement should seem like child's play. 
How did we get so lucky?  And where did the precedence stacks go? 
 
A similar thing is going on  in  our interpreter above.  You just 
KNOW that in  order  for  it  to do the computation of arithmetic 
statements (as opposed to the parsing of them), there have  to be 
numbers pushed onto a stack somewhere.  But where is the stack? 
 
Finally,  in compiler textbooks, there are  a  number  of  places 
where  stacks  and  other structures are discussed.  In the other 
leading parsing method (LR), an explicit stack is used.  In fact, 
the technique is very  much  like the old way of doing arithmetic 
expressions.  Another concept  is  that of a parse tree.  Authors 
like to draw diagrams  of  the  tokens  in a statement, connected 
into a tree with  operators  at the internal nodes.  Again, where 
are the trees and stacks in our technique?  We haven't seen any. 
The answer in all cases is that the structures are  implicit, not 
explicit.    In  any computer language, there is a stack involved 
every  time  you  call  a  subroutine.  Whenever a subroutine  is 
called, the return address is pushed onto the CPU stack.   At the 
end of the subroutine, the address is popped back off and control 
is  transferred  there.   In a recursive language such as Pascal, 
there can also be local data pushed onto the stack, and  it, too, 
returns when it's needed. 
 
For example,  function  Expression  contains  a  local  parameter 
called  Value, which it fills by a call to Term.  Suppose, in its 
next call to  Term  for  the  second  argument,  that  Term calls 
Factor, which recursively  calls  Expression  again.    That "in- 



stance" of Expression gets another value for its  copy  of Value. 
What happens  to  the  first  Value?    Answer: it's still on the 
stack, and  will  be  there  again  when  we return from our call 
sequence. 
 
In other words, the reason things look so simple  is  that  we've 
been making maximum use of the resources of the  language.    The 
hierarchy levels  and  the  parse trees are there, all right, but 
they're hidden within the  structure  of  the parser, and they're 
taken care of by the order with which the various  procedures are 
called.  Now that you've seen how we do it, it's probably hard to 
imagine doing it  any other way.  But I can tell you that it took 
a lot of years for compiler writers to get that smart.  The early 
compilers were too complex  too  imagine.    Funny how things get 
easier with a little practice. 
 
The reason  I've  brought  all  this up is as both a lesson and a 
warning.  The lesson: things can be easy when you do  them right. 
The warning: take a look at what you're doing.  If, as you branch 
out on  your  own,  you  begin to find a real need for a separate 
stack or tree structure, it may be time to ask yourself if you're 
looking at things the right way.  Maybe you just aren't using the 
facilities of the language as well as you could be. 
 
 
The next step is to add variable names.  Now,  though,  we have a 
slight problem.  For  the  compiler, we had no problem in dealing 
with variable names ... we just issued the names to the assembler 
and let the rest  of  the program take care of allocating storage 
for  them.  Here, on the other hand, we need to be able to  fetch 
the values of the variables and return them as the  return values 
of Factor.  We need a storage mechanism for these variables. 
 
Back in the early days of personal computing,  Tiny  BASIC lived. 
It had  a  grand  total  of  26  possible variables: one for each 
letter of the  alphabet.    This  fits nicely with our concept of 
single-character tokens, so we'll  try  the  same  trick.  In the 
beginning of your  interpreter,  just  after  the  declaration of 
variable Look, insert the line: 
 
               Table: Array['A'..'Z'] of integer; 
 
We also need to initialize the array, so add this procedure: 
 
 
 
 
{---------------------------------------------------------------} 
{ Initialize the Variable Area } 
 
procedure InitTable; 
var i: char; 
begin 
   for i := 'A' to 'Z' do 
      Table[i] := 0; 
end; 
{---------------------------------------------------------------} 



 
 
You must also insert a call to InitTable, in procedure Init. 
DON'T FORGET to do that, or the results may surprise you! 
 
Now that we have an array  of  variables, we can modify Factor to 
use it.  Since we don't have a way (so far) to set the variables, 
Factor  will always return zero values for  them,  but  let's  go 
ahead and extend it anyway.  Here's the new version: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Factor } 
 
function Expression: integer; Forward; 
 
function Factor: integer; 
begin 
   if Look = '(' then begin 
      Match('('); 
      Factor := Expression; 
      Match(')'); 
      end 
   else if IsAlpha(Look) then 
      Factor := Table[GetName] 
   else 
       Factor := GetNum; 
end; 
{---------------------------------------------------------------} 
 
 
As always, compile and test this version of the  program.    Even 
though all the variables are now zeros, at least we can correctly 
parse the complete expressions, as well as catch any badly formed 
expressions. 
 
I suppose you realize the next step: we need to do  an assignment 
statement so we can  put  something INTO the variables.  For now, 
let's  stick  to  one-liners,  though  we will soon  be  handling 
multiple statements. 
 
The assignment statement parallels what we did before: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
                              
 
 
procedure Assignment; 
var Name: char; 
begin 
   Name := GetName; 
   Match('='); 
   Table[Name] := Expression; 
end; 
{--------------------------------------------------------------} 



 
 
To test this,  I  added  a  temporary write statement in the main 
program,  to  print out the value of A.  Then I  tested  it  with 
various assignments to it. 
 
Of course, an interpretive language that can only accept a single 
line of program  is not of much value.  So we're going to want to 
handle multiple statements.  This  merely  means  putting  a loop 
around  the  call  to Assignment.  So let's do that now. But what 
should be the loop exit criterion?  Glad you  asked,  because  it 
brings up a point we've been able to ignore up till now. 
 
One of the most tricky things  to  handle in any translator is to 
determine when to bail out of  a  given construct and go look for 
something else.  This hasn't been a problem for us so far because 
we've only allowed for  a  single kind of construct ... either an 
expression  or an assignment statement.   When  we  start  adding 
loops and different kinds of statements, you'll find that we have 
to be very careful that things terminate properly.  If we put our 
interpreter in a loop, we need a way to quit.    Terminating on a 
newline is no good, because that's what sends us back for another 
line.  We could always let an unrecognized character take us out, 
but that would cause every run to end in an error  message, which 
certainly seems uncool. 
 
What we need  is  a  termination  character.  I vote for Pascal's 
ending period ('.').   A  minor  complication  is that Turbo ends 
every normal line  with  TWO characters, the carriage return (CR) 
and line feed (LF).   At  the  end  of  each line, we need to eat 
these characters before processing the next one.   A  natural way 
to do this would  be  with  procedure  Match, except that Match's 
error  message  prints  the character, which of course for the CR 
and/or  LF won't look so great.  What we need is a special proce- 
dure for this, which we'll no doubt be using over and over.  Here 
it is: 
 
 
{--------------------------------------------------------------} 
{ Recognize and Skip Over a Newline } 
 
procedure NewLine; 
begin 
   if Look = CR then begin 
      GetChar; 
      if Look = LF then 
         GetChar; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
Insert this procedure at any convenient spot ... I put  mine just 
after Match.  Now, rewrite the main program to look like this: 
 
 
{--------------------------------------------------------------} 



{ Main Program } 
 
begin 
   Init; 
   repeat 
      Assignment; 
      NewLine; 
   until Look = '.'; 
end. 
{--------------------------------------------------------------} 
 
 
Note that the  test for a CR is now gone, and that there are also 
no  error tests within NewLine itself.   That's  OK,  though  ... 
whatever is left over in terms of bogus characters will be caught 
at the beginning of the next assignment statement. 
 
Well, we now have a functioning interpreter.  It doesn't do  us a 
lot of  good,  however,  since  we have no way to read data in or 
write it out.  Sure would help to have some I/O! 
 
Let's wrap this session  up,  then,  by  adding the I/O routines. 
Since we're  sticking to single-character tokens, I'll use '?' to 
stand for a read statement, and  '!'  for a write, with the char- 
acter  immediately  following  them  to  be used as  a  one-token 
"parameter list."  Here are the routines: 
 
{--------------------------------------------------------------} 
{ Input Routine } 
 
procedure Input; 
begin 
   Match('?'); 
   Read(Table[GetName]); 
end; 
 
 
{--------------------------------------------------------------} 
{ Output Routine } 
 
procedure Output; 
begin 
   Match('!'); 
   WriteLn(Table[GetName]); 
end; 
{--------------------------------------------------------------} 
 
They aren't very fancy, I admit ... no prompt character on input, 
for example ... but they get the job done. 
 
The corresponding changes in  the  main  program are shown below. 
Note that we use the usual  trick  of a case statement based upon 
the current lookahead character, to decide what to do. 
 
 
{--------------------------------------------------------------} 
{ Main Program } 



 
begin 
   Init; 
   repeat 
      case Look of 
       '?': Input; 
       '!': Output; 
       else Assignment; 
      end; 
      NewLine; 
   until Look = '.'; 
end. 
{--------------------------------------------------------------} 
 
 
You have now completed a  real, working interpreter.  It's pretty 
sparse, but it works just like the "big boys."  It includes three 
kinds of program statements  (and  can  tell the difference!), 26 
variables,  and  I/O  statements.  The only things that it lacks, 
really, are control statements,  subroutines,    and some kind of 
program editing function.  The program editing part, I'm going to 
pass on.  After all, we're  not  here  to build a product, but to 
learn  things.    The control statements, we'll cover in the next 
installment, and the subroutines soon  after.  I'm anxious to get 
on with that, so we'll leave the interpreter as it stands. 
 
I hope that by  now  you're convinced that the limitation of sin- 
gle-character names  and the processing of white space are easily 
taken  care  of, as we did in the last session.   This  time,  if 
you'd like to play around with these extensions, be my  guest ... 
they're  "left as an exercise for the student."    See  you  next 
time. 
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INTRODUCTION 
 
In  the  first  four  installments  of  this  series, we've  been 
concentrating on the parsing of math  expressions  and assignment 
statements.  In  this  installment,  we'll  take off on a new and 
exciting  tangent:  that   of  parsing  and  translating  control 
constructs such as IF statements. 
 
This subject is dear to my heart, because it represents a turning 
point  for  me.    I  had  been  playing  with  the   parsing  of 
expressions, just as  we  have  done  in this series, but I still 
felt that I was a LONG way from being able  to  handle a complete 
language.  After all, REAL  languages have branches and loops and 
subroutines and all that.  Perhaps you've shared some of the same 
thoughts.    Awhile  back,  though,  I  had  to  produce  control 
constructs for a structured assembler preprocessor I was writing. 
Imagine my surprise to  discover  that it was far easier than the 
expression  parsing  I  had  already  been through.   I  remember 
thinking, "Hey! This is EASY!" After we've finished this session, 
I'll bet you'll be thinking so, too. 
 



 
THE PLAN 
 
In what follows, we'll be starting over again with a bare cradle, 
and as we've done twice before now, we'll build things up  one at 
a time.  We'll also  be retaining the concept of single-character 
tokens that has served us so well to date.   This  means that the 
"code" will look a little funny, with 'i' for IF, 'w'  for WHILE, 
etc.  But it helps us  get  the concepts down pat without fussing 
over  lexical  scanning.    Fear  not  ...  eventually we'll  see 
something looking like "real" code. 
 
I also don't  want  to  have  us  get bogged down in dealing with 
statements other than branches, such as the assignment statements 
we've  been  working  on.  We've already demonstrated that we can 
handle them, so there's no point carrying them  around  as excess 
baggage during this exercise.  So what I'll do instead is  to use 
an  anonymous  statement,  "other", to take the place of the non- 
control statements and serve as a place-holder for them.  We have 
to generate some kind of object code for them  (we're  back  into 
compiling, not interpretation), so for want of anything else I'll 
just echo the character input. 
 
OK, then, starting with  yet  another  copy  of the cradle, let's 
define the procedure: 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an "Other" } 
 
procedure Other; 
begin 
   EmitLn(GetName); 
end; 
{--------------------------------------------------------------} 
 
 
Now include a call to it in the main program, thus: 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
   Init; 
   Other; 
end. 
{--------------------------------------------------------------} 
 
 
Run  the program and see what you get.  Not very exciting, is it? 
But hang in there, it's a start, and things will get better. 
 
The first thing we need is the ability to deal with more than one 
statement, since a single-line branch  is pretty limited.  We did 
that in the last session on interpreting, but this time let's get 
a little more formal.  Consider the following BNF: 



 
          <program> ::= <block> END 
 
          <block> ::= [ <statement> ]* 
 
This says that, for our purposes here, a program is defined  as a 
block, followed by an END statement.  A block, in  turn, consists 
of zero or more statements.  We only have one kind  of statement, 
so far. 
 
What signals the end of a block?  It's  simply any construct that 
isn't an "other"  statement.    For  now, that means only the END 
statement. 
 
Armed with these ideas, we can proceed to build  up  our  parser. 
The code for a program (we  have  to call it DoProgram, or Pascal 
will complain, is: 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Program } 
 
procedure DoProgram; 
begin 
   Block; 
   if Look <> 'e' then Expected('End'); 
   EmitLn('END') 
end; 
{--------------------------------------------------------------} 
 
 
Notice  that  I've  arranged to emit  an  "END"  command  to  the 
assembler, which sort of  punctuates  the  output code, and makes 
sense considering that we're parsing a complete program here. 
 
The code for Block is: 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Statement Block } 
 
procedure Block; 
begin 
   while not(Look in ['e']) do begin 
      Other; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
(From the form of the procedure, you just KNOW we're going  to be 
adding to it in a bit!) 
 
OK, enter these routines into your program.  Replace the  call to 
Block in the main program, by  a  call  to DoProgram.  Now try it 
and  see  how  it works.  Well, it's still not  much,  but  we're 
getting closer. 
 



 
SOME GROUNDWORK 
 
Before we begin to define the various control constructs, we need 
to  lay a bit more groundwork.  First, a word of warning: I won't 
be using the same syntax  for these constructs as you're familiar 
with  from Pascal or C.  For example, the Pascal syntax for an IF 
is: 
 
 
     IF <condition> THEN <statement> 
 
 
(where the statement, of course, may be compound). 
 
The C version is similar: 
 
 
     IF ( <condition> ) <statement> 
 
 
Instead, I'll be using something that looks more like Ada: 
 
 
     IF <condition> <block> ENDIF 
 
 
In  other  words,  the IF construct has  a  specific  termination 
symbol.  This avoids  the  dangling-else of Pascal and C and also 
precludes the need for the brackets {} or begin-end.   The syntax 
I'm showing you here, in fact, is that of the language  KISS that 
I'll be detailing in  later  installments.   The other constructs 
will also be  slightly  different.    That  shouldn't  be  a real 
problem for you.  Once you see how it's done, you'll realize that 
it  really  doesn't  matter  so  much  which  specific syntax  is 
involved.  Once the syntax is defined, turning it  into  code  is 
straightforward. 
 
Now, all of the  constructs  we'll  be  dealing with here involve 
transfer of control, which at the assembler-language  level means 
conditional  and/or  unconditional branches.   For  example,  the 
simple IF statement 
 
 
          IF <condition> A ENDIF B .... 
 
must get translated into 
 
          Branch if NOT condition to L 
          A 
     L:   B 
          ... 
 
 
It's clear, then, that we're going to need  some  more procedures 
to  help  us  deal with these branches.  I've defined two of them 
below.  Procedure NewLabel generates unique labels.  This is done 



via the simple expedient of calling every label  'Lnn',  where nn 
is a label number starting from zero.   Procedure  PostLabel just 
outputs the labels at the proper place. 
 
Here are the two routines: 
 
 
{--------------------------------------------------------------} 
{ Generate a Unique Label } 
 
function NewLabel: string; 
var S: string; 
begin 
   Str(LCount, S); 
   NewLabel := 'L' + S; 
   Inc(LCount); 
end; 
 
 
{--------------------------------------------------------------} 
{ Post a Label To Output } 
 
procedure PostLabel(L: string); 
begin 
   WriteLn(L, ':'); 
end; 
{--------------------------------------------------------------} 
 
 
Notice that we've added  a  new  global  variable, LCount, so you 
need to change the VAR declarations at the top of the  program to 
look like this: 
 
 
var Look  : char;              { Lookahead Character } 
    Lcount: integer;           { Label Counter } 
 
 
Also, add the following extra initialization to Init: 
 
 
   LCount := 0; 
 
(DON'T forget that, or your labels can look really strange!) 
 
 
At this point I'd also like to show you a  new  kind of notation. 
If  you  compare  the form of the IF statement above with the as- 
sembler code that must be produced, you can see  that  there  are 
certain  actions  associated  with each of the  keywords  in  the 
statement: 
 
 
     IF:  First, get the condition and issue the code for it. 
          Then, create a unique label and emit a branch if false. 
 
     ENDIF: Emit the label. 



 
 
These actions can be shown very concisely if we write  the syntax 
this way: 
                               
 
     IF 
     <condition>    { Condition; 
                      L = NewLabel; 
                      Emit(Branch False to L); } 
     <block> 
     ENDIF          { PostLabel(L) } 
 
 
This is an example  of  syntax-directed  translation.  We've been 
doing it all along ... we've just never written it down  this way 
before.  The stuff in curly brackets represents the ACTIONS to be 
taken.  The nice part about this representation is  that  it  not 
only shows what  we  have  to  recognize, but also the actions we 
have to perform, and in which  order.   Once we have this syntax, 
the code almost writes itself. 
 
About  the  only thing left to do is to be a  bit  more  specific 
about what we mean by "Branch if false." 
 
I'm assuming that there will  be  code  executed  for <condition> 
that  will  perform  Boolean algebra and compute some result.  It 
should also set the condition flags corresponding to that result. 
Now, the usual convention  for  a Boolean variable is to let 0000 
represent "false," and  anything  else (some use FFFF, some 0001) 
represent "true." 
 
On the 68000  the  condition  flags  are set whenever any data is 
moved or calculated.  If the  data  is a 0000 (corresponding to a 
false condition, remember), the zero flag will be set.   The code 
for "Branch on zero" is BEQ.  So for our purposes here, 
 
 
               BEQ  <=> Branch if false 
               BNE  <=> Branch if true 
 
 
It's the nature of the beast that most  of  the  branches  we see 
will  be  BEQ's  ...  we'll  be branching AROUND the code  that's 
supposed to be executed when the condition is true. 
 
 
THE IF STATEMENT 
 
With that bit of explanation out of the way, we're  finally ready 
to begin coding the IF-statement parser.  In  fact,  we've almost 
already  done  it!   As usual, I'll be using our single-character 
approach, with the character 'i' for IF, and 'e'  for  ENDIF  (as 
well  as END ... that dual nature causes  no  confusion).    I'll 
also, for now, skip completely  the character for the branch con- 
dition, which we still have to define. 
 



The code for DoIf is: 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an IF Construct } 
 
procedure Block; Forward; 
 
 
procedure DoIf; 
var L: string; 
begin 
   Match('i'); 
   L := NewLabel; 
   Condition; 
   EmitLn('BEQ ' + L); 
   Block; 
   Match('e'); 
   PostLabel(L); 
end; 
{--------------------------------------------------------------} 
 
 
Add this routine to your program, and change  Block  to reference 
it as follows: 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Statement Block } 
 
procedure Block; 
begin 
   while not(Look in ['e']) do begin 
      case Look of 
       'i': DoIf; 
       'o': Other; 
      end; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
Notice the reference to procedure Condition.    Eventually, we'll 
write a routine that  can  parse  and  translate any Boolean con- 
dition we care to give it.  But  that's  a  whole  installment by 
itself (the next one, in fact).    For  now, let's just make it a 
dummy that emits some text.  Write the following routine: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Boolean Condition } 
{ This version is a dummy } 
 
Procedure Condition; 
begin 
   EmitLn('<condition>'); 
end; 
{--------------------------------------------------------------} 



 
 
Insert this procedure in your program just before DoIf.   Now run 
the program.  Try a string like 
 
     aibece 
 
As you can see,  the  parser seems to recognize the construct and 
inserts the object code at the  right  places.   Now try a set of 
nested IF's, like 
 
     aibicedefe 
 
It's starting to look real, eh? 
 
Now that we  have  the  general  idea  (and the tools such as the 
notation and the procedures NewLabel and PostLabel), it's a piece 
of cake to extend the parser to include other  constructs.    The 
first (and also one of the  trickiest)  is to add the ELSE clause 
to IF.  The BNF is 
 
 
     IF <condition> <block> [ ELSE <block>] ENDIF 
 
 
The tricky part arises simply  because there is an optional part, 
which doesn't occur in the other constructs. 
 
The corresponding output code should be 
 
 
          <condition> 
          BEQ L1 
          <block> 
          BRA L2 
     L1:  <block> 
     L2:  ... 
 
 
This leads us to the following syntax-directed translation: 
 
 
     IF 
     <condition>    { L1 = NewLabel; 
                      L2 = NewLabel; 
                      Emit(BEQ L1) } 
     <block> 
     ELSE           { Emit(BRA L2); 
                      PostLabel(L1) } 
     <block> 
     ENDIF          { PostLabel(L2) } 
 
 
Comparing this with the case for an ELSE-less IF gives us  a clue 
as to how to handle both situations.   The  code  below  does it. 
(Note that I  use  an  'l'  for  the ELSE, since 'e' is otherwise 
occupied): 



 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an IF Construct } 
 
procedure DoIf; 
var L1, L2: string; 
begin 
   Match('i'); 
   Condition; 
   L1 := NewLabel; 
   L2 := L1; 
   EmitLn('BEQ ' + L1); 
   Block; 
   if Look = 'l' then begin 
      Match('l'); 
      L2 := NewLabel; 
      EmitLn('BRA ' + L2); 
      PostLabel(L1); 
      Block; 
   end; 
   Match('e'); 
   PostLabel(L2); 
end; 
{--------------------------------------------------------------} 
 
 
There you have it.  A complete IF parser/translator, in  19 lines 
of code. 
 
Give it a try now.  Try something like 
 
   aiblcede 
 
Did it work?  Now, just  to  be  sure we haven't broken the ELSE- 
less case, try 
 
   aibece 
 
Now try some nested IF's.  Try anything you like,  including some 
badly formed statements.   Just  remember that 'e' is not a legal 
"other" statement. 
 
 
THE WHILE STATEMENT 
 
The next type of statement should be easy, since we  already have 
the process  down  pat.    The  syntax  I've chosen for the WHILE 
statement is 
 
 
          WHILE <condition> <block> ENDWHILE 
 
 
I know,  I  know,  we  don't  REALLY  need separate kinds of ter- 
minators for each construct ... you can see that by the fact that 
in our one-character version, 'e' is used for all of them.  But I 



also remember  MANY debugging sessions in Pascal, trying to track 
down a wayward END that the compiler obviously thought I meant to 
put  somewhere  else.   It's been my experience that specific and 
unique  keywords,  although  they add to the  vocabulary  of  the 
language,  give  a  bit of error-checking that is worth the extra 
work for the compiler writer. 
 
Now,  consider  what  the  WHILE  should be translated into.   It 
should be: 
 
 
     L1:  <condition> 
          BEQ L2 
          <block> 
          BRA L1 
     L2: 
 
 
 
 
As before, comparing the two representations gives us the actions 
needed at each point. 
 
 
     WHILE          { L1 = NewLabel; 
                      PostLabel(L1) } 
     <condition>    { Emit(BEQ L2) } 
     <block> 
     ENDWHILE       { Emit(BRA L1); 
                      PostLabel(L2) } 
 
 
The code follows immediately from the syntax: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a WHILE Statement } 
 
procedure DoWhile; 
var L1, L2: string; 
begin 
   Match('w'); 
   L1 := NewLabel; 
   L2 := NewLabel; 
   PostLabel(L1); 
   Condition; 
   EmitLn('BEQ ' + L2); 
   Block; 
   Match('e'); 
   EmitLn('BRA ' + L1); 
   PostLabel(L2); 
end; 
{--------------------------------------------------------------} 
 
 
Since  we've  got a new statement, we have to add a  call  to  it 
within procedure Block: 



 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Statement Block } 
 
procedure Block; 
begin 
   while not(Look in ['e', 'l']) do begin 
      case Look of 
       'i': DoIf; 
       'w': DoWhile; 
       else Other; 
      end; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
No other changes are necessary. 
 
OK, try the new program.  Note that this  time,  the  <condition> 
code is INSIDE the upper label, which is just where we wanted it. 
Try some nested loops.  Try some loops within IF's, and some IF's 
within loops.  If you get  a  bit  confused as to what you should 
type, don't be discouraged:  you  write  bugs in other languages, 
too, don't you?  It'll look a lot  more  meaningful  when  we get 
full keywords. 
 
I hope by now that you're beginning to  get  the  idea  that this 
really  IS easy.  All we have to do to accomodate a new construct 
is to work out  the  syntax-directed translation of it.  The code 
almost falls out  from  there,  and  it doesn't affect any of the 
other routines.  Once you've gotten the feel of the thing, you'll 
see that you  can  add  new  constructs  about as fast as you can 
dream them up. 
 
 
THE LOOP STATEMENT 
 
We could stop right here, and  have  a language that works.  It's 
been  shown  many  times that a high-order language with only two 
constructs, the IF and the WHILE, is sufficient  to  write struc- 
tured  code.   But we're on a roll now, so let's  richen  up  the 
repertoire a bit. 
 
This construct is even easier, since it has no condition  test at 
all  ... it's an infinite loop.  What's the point of such a loop? 
Not much, by  itself,  but  later  on  we're going to add a BREAK 
command,  that  will  give us a way out.  This makes the language 
considerably richer than Pascal, which  has  no  break,  and also 
avoids the funny  WHILE(1) or WHILE TRUE of C and Pascal. 
 
The syntax is simply 
 
     LOOP <block> ENDLOOP 
 
and the syntax-directed translation is: 



 
 
     LOOP           { L = NewLabel; 
                      PostLabel(L) } 
     <block> 
     ENDLOOP        { Emit(BRA L } 
 
 
The corresponding code is shown below.  Since  I've  already used 
'l'  for  the  ELSE, I've used  the  last  letter,  'p',  as  the 
"keyword" this time. 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a LOOP Statement } 
 
procedure DoLoop; 
var L: string; 
begin 
   Match('p'); 
   L := NewLabel; 
   PostLabel(L); 
   Block; 
   Match('e'); 
   EmitLn('BRA ' + L); 
end; 
{--------------------------------------------------------------} 
                              
 
When you insert this routine, don't forget to add a line in Block 
to call it. 
 
 
 
 
REPEAT-UNTIL 
 
Here's one construct that I lifted right from Pascal.  The syntax 
is 
 
 
     REPEAT <block> UNTIL <condition>  , 
 
 
and the syntax-directed translation is: 
 
 
     REPEAT         { L = NewLabel; 
                      PostLabel(L) } 
     <block> 
     UNTIL 
     <condition>    { Emit(BEQ L) } 
 
 
As usual, the code falls out pretty easily: 
 
 



{--------------------------------------------------------------} 
{ Parse and Translate a REPEAT Statement } 
 
procedure DoRepeat; 
var L: string; 
begin 
   Match('r'); 
   L := NewLabel; 
   PostLabel(L); 
   Block; 
   Match('u'); 
   Condition; 
   EmitLn('BEQ ' + L); 
end; 
{--------------------------------------------------------------} 
 
 
As  before, we have to add the call  to  DoRepeat  within  Block. 
This time, there's a difference, though.  I decided  to  use  'r' 
for REPEAT (naturally), but I also decided to use 'u'  for UNTIL. 
This means that the 'u' must be added to the set of characters in 
the while-test.  These  are  the  characters  that signal an exit 
from the current  block  ... the "follow" characters, in compiler 
jargon. 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Statement Block } 
 
procedure Block; 
begin 
   while not(Look in ['e', 'l', 'u']) do begin 
      case Look of 
       'i': DoIf; 
       'w': DoWhile; 
       'p': DoLoop; 
       'r': DoRepeat; 
       else Other; 
      end; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
THE FOR LOOP 
 
The FOR loop  is a very handy one to have around, but it's a bear 
to translate.  That's not so much because the construct itself is 
hard ... it's only a loop  after  all ... but simply because it's 
hard to implement  in  assembler  language.    Once  the  code is 
figured out, the translation is straightforward enough. 
 
C fans love  the  FOR-loop  of  that language (and, in fact, it's 
easier to code), but I've chosen instead a syntax very  much like 
the one from good ol' BASIC: 
 
 



     FOR <ident> = <expr1> TO <expr2> <block> ENDFOR 
 
 
The translation of a FOR loop  can  be just about as difficult as 
you choose  to  make  it,  depending  upon  the way you decide to 
define  the rules as to how to handle the limits.  Does expr2 get 
evaluated  every time through the loop, for  example,  or  is  it 
treated as a constant limit?   Do  you always go through the loop 
at least once,  as  in  FORTRAN,  or  not? It gets simpler if you 
adopt the point of view that the construct is equivalent to: 
 
 
     <ident> = <expr1> 
     TEMP = <expr2> 
     WHILE <ident> <= TEMP 
     <block> 
     ENDWHILE 
 
 
Notice that with this definition of the loop, <block> will not be 
executed at all if <expr1> is initially larger than <expr2>. 
                              
The 68000 code needed to do this is trickier than  anything we've 
done so far.  I had a couple  of  tries  at  it, putting both the 
counter  and  the    upper limit on the stack, both in registers, 
etc.  I  finally  arrived  at  a hybrid arrangement, in which the 
loop counter is in memory (so that it can be accessed  within the 
loop), and the upper limit is on the stack.  The  translated code 
came out like this: 
 
 
          <ident>             get name of loop counter 
          <expr1>             get initial value 
          LEA <ident>(PC),A0  address the loop counter 
          SUBQ #1,D0          predecrement it 
          MOVE D0,(A0)        save it 
          <expr1>             get upper limit 
          MOVE D0,-(SP)       save it on stack 
 
     L1:  LEA <ident>(PC),A0  address loop counter 
          MOVE (A0),D0        fetch it to D0 
          ADDQ #1,D0          bump the counter 
          MOVE D0,(A0)        save new value 
          CMP (SP),D0         check for range 
          BLE L2              skip out if D0 > (SP) 
          <block> 
          BRA L1              loop for next pass 
     L2:  ADDQ #2,SP          clean up the stack 
 
 
Wow!    That  seems like a lot of code ...  the  line  containing 
<block> seems to almost get lost.  But that's the best I could do 
with it.   I guess it helps to keep in mind that it's really only 
sixteen  words,  after  all.  If  anyone else can  optimize  this 
better, please let me know. 
 
Still, the parser  routine  is  pretty  easy now that we have the 



code: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a FOR Statement } 
 
procedure DoFor; 
var L1, L2: string; 
    Name: char; 
begin 
   Match('f'); 
   L1 := NewLabel; 
   L2 := NewLabel; 
   Name := GetName; 
   Match('='); 
   Expression; 
   EmitLn('SUBQ #1,D0'); 
   EmitLn('LEA ' + Name + '(PC),A0'); 
   EmitLn('MOVE D0,(A0)'); 
   Expression; 
   EmitLn('MOVE D0,-(SP)'); 
   PostLabel(L1); 
   EmitLn('LEA ' + Name + '(PC),A0'); 
   EmitLn('MOVE (A0),D0'); 
   EmitLn('ADDQ #1,D0'); 
   EmitLn('MOVE D0,(A0)'); 
   EmitLn('CMP (SP),D0'); 
   EmitLn('BGT ' + L2); 
   Block; 
   Match('e'); 
   EmitLn('BRA ' + L1); 
   PostLabel(L2); 
   EmitLn('ADDQ #2,SP'); 
end; 
{--------------------------------------------------------------} 
 
 
Since we don't have  expressions  in this parser, I used the same 
trick as for Condition, and wrote the routine 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Expression } 
{ This version is a dummy } 
 
Procedure Expression; 
begin 
   EmitLn('<expr>'); 
end; 
{--------------------------------------------------------------} 
 
 
Give it a try.  Once again,  don't  forget  to  add  the  call in 
Block.    Since  we don't have any input for the dummy version of 
Expression, a typical input line would look something like 
 
     afi=bece 



 
Well, it DOES generate a lot of code, doesn't it?    But at least 
it's the RIGHT code. 
 
 
THE DO STATEMENT 
 
All this made me wish for a simpler version of the FOR loop.  The 
reason for all the code  above  is  the  need  to  have  the loop 
counter accessible as a variable within the loop.  If all we need 
is a counting loop to make us go through  something  a  specified 
number of times, but  don't  need  access  to the counter itself, 
there is a much easier solution.  The 68000 has a  "decrement and 
branch nonzero" instruction built in which is ideal for counting. 
For good measure, let's add this construct, too.   This  will  be 
the last of our loop structures. 
                              
The syntax and its translation is: 
 
 
     DO 
     <expr>         { Emit(SUBQ #1,D0); 
                      L = NewLabel; 
                      PostLabel(L); 
                      Emit(MOVE D0,-(SP) } 
     <block> 
     ENDDO          { Emit(MOVE (SP)+,D0; 
                      Emit(DBRA D0,L) } 
 
 
That's quite a bit simpler!  The loop will execute  <expr> times. 
Here's the code: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a DO Statement } 
 
procedure Dodo; 
var L: string; 
begin 
   Match('d'); 
   L := NewLabel; 
   Expression; 
   EmitLn('SUBQ #1,D0'); 
   PostLabel(L); 
   EmitLn('MOVE D0,-(SP)'); 
   Block; 
   EmitLn('MOVE (SP)+,D0'); 
   EmitLn('DBRA D0,' + L); 
end; 
{--------------------------------------------------------------} 
 
 
I think you'll have to agree, that's a whole lot simpler than the 
classical FOR.  Still, each construct has its place. 
 
 



THE BREAK STATEMENT 
 
Earlier I promised you a BREAK statement to accompany LOOP.  This 
is  one  I'm sort of proud of.  On the face of it a  BREAK  seems 
really  tricky.  My first approach was to just use it as an extra 
terminator to Block, and split all the loops into two parts, just 
as  I did with the ELSE half of an IF.  That  turns  out  not  to 
work, though, because the BREAK statement is almost certainly not 
going to show  up at the same level as the loop itself.  The most 
likely place for a BREAK is right after an IF, which  would cause 
it to exit to the IF  construct,  not the enclosing loop.  WRONG. 
The  BREAK  has  to exit the inner LOOP, even if it's nested down 
into several levels of IFs. 
                              
My next thought was that I would just store away, in  some global 
variable, the ending label of the innermost loop.    That doesn't 
work  either, because there may be a break  from  an  inner  loop 
followed by a break from an outer one.  Storing the label for the 
inner loop would clobber the label for the  outer  one.    So the 
global variable turned into a stack.  Things were starting to get 
messy. 
 
Then  I  decided  to take my own advice.  Remember  in  the  last 
session when  I  pointed  out  how  well  the implicit stack of a 
recursive descent parser was  serving  our needs?  I said that if 
you begin to  see  the  need  for  an external stack you might be 
doing  something  wrong.   Well, I was.  It is indeed possible to 
let the recursion built into  our parser take care of everything, 
and the solution is so simple that it's surprising. 
 
The secret is  to  note  that  every BREAK statement has to occur 
within a block ... there's no place else for it to be.  So all we 
have  to  do  is to pass into  Block  the  exit  address  of  the 
innermost loop.  Then it can pass the address to the routine that 
translates the  break instruction.  Since an IF statement doesn't 
change the loop level, procedure DoIf doesn't need to do anything 
except  pass the label into ITS blocks (both  of  them).    Since 
loops DO change the level,  each  loop  construct  simply ignores 
whatever label is above it and passes its own exit label along. 
 
All  this  is easier to show you than it is to  describe.    I'll 
demonstrate with the easiest loop, which is LOOP: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a LOOP Statement } 
 
procedure DoLoop; 
var L1, L2: string; 
begin 
   Match('p'); 
   L1 := NewLabel; 
   L2 := NewLabel; 
   PostLabel(L1); 
   Block(L2); 
   Match('e'); 
   EmitLn('BRA ' + L1); 



   PostLabel(L2); 
end; 
{--------------------------------------------------------------} 
 
 
Notice that DoLoop now has TWO labels, not just one.   The second 
is to give the BREAK instruction a target to jump  to.   If there 
is no BREAK within  the  loop, we've wasted a label and cluttered 
up things a bit, but there's no harm done. 
 
Note also that Block now has a parameter, which  for  loops  will 
always be the exit address.  The new version of Block is: 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Statement Block } 
 
procedure Block(L: string); 
begin 
   while not(Look in ['e', 'l', 'u']) do begin 
      case Look of 
       'i': DoIf(L); 
       'w': DoWhile; 
       'p': DoLoop; 
       'r': DoRepeat; 
       'f': DoFor; 
       'd': DoDo; 
       'b': DoBreak(L); 
       else Other; 
      end; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
Again,  notice  that  all Block does with the label is to pass it 
into DoIf and  DoBreak.    The  loop  constructs  don't  need it, 
because they are going to pass their own label anyway. 
 
The new version of DoIf is: 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an IF Construct } 
 
procedure Block(L: string); Forward; 
 
 
procedure DoIf(L: string); 
var L1, L2: string; 
begin 
   Match('i'); 
   Condition; 
   L1 := NewLabel; 
   L2 := L1; 
   EmitLn('BEQ ' + L1); 
   Block(L); 
   if Look = 'l' then begin 



      Match('l'); 
      L2 := NewLabel; 
      EmitLn('BRA ' + L2); 
      PostLabel(L1); 
      Block(L); 
   end; 
   Match('e'); 
   PostLabel(L2); 
end; 
{--------------------------------------------------------------} 
 
 
Here,  the  only  thing  that  changes  is  the addition  of  the 
parameter to procedure Block.  An IF statement doesn't change the 
loop  nesting level, so DoIf just passes the  label  along.    No 
matter how many levels of IF nesting we have, the same label will 
be used. 
 
Now, remember that DoProgram also calls Block, so it now needs to 
pass it a label.  An  attempt  to  exit the outermost block is an 
error, so DoProgram  passes  a  null  label  which  is  caught by 
DoBreak: 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a BREAK } 
 
procedure DoBreak(L: string); 
begin 
   Match('b'); 
   if L <> '' then 
      EmitLn('BRA ' + L) 
   else Abort('No loop to break from'); 
end; 
 
 
{--------------------------------------------------------------} 
 
{ Parse and Translate a Program } 
 
procedure DoProgram; 
begin 
   Block(''); 
   if Look <> 'e' then Expected('End'); 
   EmitLn('END') 
end; 
{--------------------------------------------------------------} 
 
 
That  ALMOST takes care of everything.  Give it a try, see if you 
can "break" it <pun>.  Careful, though.  By this time  we've used 
so many letters, it's hard to think of characters that aren't now 
representing  reserved  words.    Remember:  before  you  try the 
program, you're going to have to edit every occurence of Block in 
the other loop constructs to include the new parameter.    Do  it 
just like I did for LOOP. 
 



I  said ALMOST above.  There is one slight problem: if you take a 
hard  look  at  the code generated for DO, you'll see that if you 
break  out  of  this loop, the value of the loop counter is still 
left on the stack.  We're going to have to fix that!  A shame ... 
that was one  of  our  smaller  routines, but it can't be helped. 
Here's a version that doesn't have the problem: 
 
 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a DO Statement } 
 
procedure Dodo; 
var L1, L2: string; 
begin 
   Match('d'); 
   L1 := NewLabel; 
   L2 := NewLabel; 
   Expression; 
   EmitLn('SUBQ #1,D0'); 
   PostLabel(L1); 
   EmitLn('MOVE D0,-(SP)'); 
   Block(L2); 
   EmitLn('MOVE (SP)+,D0'); 
   EmitLn('DBRA D0,' + L1); 
   EmitLn('SUBQ #2,SP'); 
   PostLabel(L2); 
   EmitLn('ADDQ #2,SP'); 
end; 
{--------------------------------------------------------------} 
 
 
The  two  extra  instructions,  the  SUBQ and ADDQ, take care  of 
leaving the stack in the right shape. 
                              
 
CONCLUSION 
 
At this point we have created a number of control  constructs ... 
a richer set, really, than that provided by almost any other pro- 
gramming language.  And,  except  for the FOR loop, it was pretty 
easy to do.  Even that one was tricky only because it's tricky in 
assembler language. 
 
I'll conclude this session here.  To wrap the thing up with a red 
ribbon, we really  should  have  a  go  at  having  real keywords 
instead of these mickey-mouse  single-character  things.   You've 
already seen that  the  extension to multi-character words is not 
difficult, but in this case it will make a big difference  in the 
appearance of our input code.  I'll save that little bit  for the 
next installment.  In that installment we'll also address Boolean 
expressions, so we can get rid of the dummy version  of Condition 
that we've used here.  See you then. 
 
For reference purposes, here is  the  completed  parser  for this 
session: 



 
 
 
 
{--------------------------------------------------------------} 
program Branch; 
 
{--------------------------------------------------------------} 
{ Constant Declarations } 
 
const TAB = ^I; 
      CR  = ^M; 
 
 
{--------------------------------------------------------------} 
{ Variable Declarations } 
 
var Look  : char;              { Lookahead Character } 
    Lcount: integer;           { Label Counter } 
 
 
{--------------------------------------------------------------} 
{ Read New Character From Input Stream } 
 
procedure GetChar; 
begin 
   Read(Look); 
end; 
 
 
{--------------------------------------------------------------} 
{ Report an Error } 
 
procedure Error(s: string); 
begin 
   WriteLn; 
   WriteLn(^G, 'Error: ', s, '.'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Report Error and Halt } 
 
procedure Abort(s: string); 
begin 
   Error(s); 
   Halt; 
end; 
 
 
{--------------------------------------------------------------} 
{ Report What Was Expected } 
 
procedure Expected(s: string); 
begin 
   Abort(s + ' Expected'); 
end; 



 
{--------------------------------------------------------------} 
{ Match a Specific Input Character } 
 
procedure Match(x: char); 
begin 
   if Look = x then GetChar 
   else Expected('''' + x + ''''); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an Alpha Character } 
 
function IsAlpha(c: char): boolean; 
begin 
   IsAlpha := UpCase(c) in ['A'..'Z']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Decimal Digit } 
 
function IsDigit(c: char): boolean; 
begin 
   IsDigit := c in ['0'..'9']; 
end; 
                              
 
{--------------------------------------------------------------} 
{ Recognize an Addop } 
 
function IsAddop(c: char): boolean; 
begin 
   IsAddop := c in ['+', '-']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize White Space } 
 
function IsWhite(c: char): boolean; 
begin 
   IsWhite := c in [' ', TAB]; 
end; 
 
 
{--------------------------------------------------------------} 
{ Skip Over Leading White Space } 
 
procedure SkipWhite; 
begin 
   while IsWhite(Look) do 
      GetChar; 
end; 
 
 



{--------------------------------------------------------------} 
{ Get an Identifier } 
 
function GetName: char; 
begin 
   if not IsAlpha(Look) then Expected('Name'); 
   GetName := UpCase(Look); 
   GetChar; 
end; 
 
 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNum: char; 
begin 
   if not IsDigit(Look) then Expected('Integer'); 
   GetNum := Look; 
   GetChar; 
end; 
 
 
{--------------------------------------------------------------} 
{ Generate a Unique Label } 
 
function NewLabel: string; 
var S: string; 
begin 
   Str(LCount, S); 
   NewLabel := 'L' + S; 
   Inc(LCount); 
end; 
 
 
{--------------------------------------------------------------} 
{ Post a Label To Output } 
 
procedure PostLabel(L: string); 
begin 
   WriteLn(L, ':'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Output a String with Tab } 
 
procedure Emit(s: string); 
begin 
   Write(TAB, s); 
end; 
 
 
{--------------------------------------------------------------} 
 
{ Output a String with Tab and CRLF } 



 
procedure EmitLn(s: string); 
begin 
   Emit(s); 
   WriteLn; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Boolean Condition } 
 
procedure Condition; 
begin 
   EmitLn('<condition>'); 
end; 
 
                              
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Math Expression } 
 
procedure Expression; 
begin 
   EmitLn('<expr>'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an IF Construct } 
 
procedure Block(L: string); Forward; 
 
 
procedure DoIf(L: string); 
var L1, L2: string; 
begin 
   Match('i'); 
   Condition; 
   L1 := NewLabel; 
   L2 := L1; 
   EmitLn('BEQ ' + L1); 
   Block(L); 
   if Look = 'l' then begin 
      Match('l'); 
      L2 := NewLabel; 
      EmitLn('BRA ' + L2); 
      PostLabel(L1); 
      Block(L); 
   end; 
   Match('e'); 
   PostLabel(L2); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a WHILE Statement } 



 
procedure DoWhile; 
var L1, L2: string; 
begin 
   Match('w'); 
   L1 := NewLabel; 
   L2 := NewLabel; 
   PostLabel(L1); 
   Condition; 
   EmitLn('BEQ ' + L2); 
   Block(L2); 
   Match('e'); 
   EmitLn('BRA ' + L1); 
   PostLabel(L2); 
end; 
                              
 
{--------------------------------------------------------------} 
{ Parse and Translate a LOOP Statement } 
 
procedure DoLoop; 
var L1, L2: string; 
begin 
   Match('p'); 
   L1 := NewLabel; 
   L2 := NewLabel; 
   PostLabel(L1); 
   Block(L2); 
   Match('e'); 
   EmitLn('BRA ' + L1); 
   PostLabel(L2); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a REPEAT Statement } 
 
procedure DoRepeat; 
var L1, L2: string; 
begin 
   Match('r'); 
   L1 := NewLabel; 
   L2 := NewLabel; 
   PostLabel(L1); 
   Block(L2); 
   Match('u'); 
   Condition; 
   EmitLn('BEQ ' + L1); 
   PostLabel(L2); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a FOR Statement } 
 
procedure DoFor; 
var L1, L2: string; 



    Name: char; 
begin 
   Match('f'); 
   L1 := NewLabel; 
   L2 := NewLabel; 
   Name := GetName; 
   Match('='); 
   Expression; 
   EmitLn('SUBQ #1,D0'); 
   EmitLn('LEA ' + Name + '(PC),A0'); 
   EmitLn('MOVE D0,(A0)'); 
   Expression; 
   EmitLn('MOVE D0,-(SP)'); 
   PostLabel(L1); 
   EmitLn('LEA ' + Name + '(PC),A0'); 
   EmitLn('MOVE (A0),D0'); 
   EmitLn('ADDQ #1,D0'); 
   EmitLn('MOVE D0,(A0)'); 
   EmitLn('CMP (SP),D0'); 
   EmitLn('BGT ' + L2); 
   Block(L2); 
   Match('e'); 
   EmitLn('BRA ' + L1); 
   PostLabel(L2); 
   EmitLn('ADDQ #2,SP'); 
end; 
 
 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a DO Statement } 
 
procedure Dodo; 
var L1, L2: string; 
begin 
   Match('d'); 
   L1 := NewLabel; 
   L2 := NewLabel; 
   Expression; 
   EmitLn('SUBQ #1,D0'); 
   PostLabel(L1); 
   EmitLn('MOVE D0,-(SP)'); 
   Block(L2); 
   EmitLn('MOVE (SP)+,D0'); 
   EmitLn('DBRA D0,' + L1); 
   EmitLn('SUBQ #2,SP'); 
   PostLabel(L2); 
   EmitLn('ADDQ #2,SP'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a BREAK } 
 
procedure DoBreak(L: string); 
begin 



   Match('b'); 
   EmitLn('BRA ' + L); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an "Other" } 
 
procedure Other; 
begin 
   EmitLn(GetName); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Statement Block } 
 
procedure Block(L: string); 
begin 
   while not(Look in ['e', 'l', 'u']) do begin 
      case Look of 
       'i': DoIf(L); 
       'w': DoWhile; 
       'p': DoLoop; 
       'r': DoRepeat; 
       'f': DoFor; 
       'd': DoDo; 
       'b': DoBreak(L); 
       else Other; 
      end; 
   end; 
end; 
 
 
 
 
{--------------------------------------------------------------} 
 
{ Parse and Translate a Program } 
 
procedure DoProgram; 
begin 
   Block(''); 
   if Look <> 'e' then Expected('End'); 
   EmitLn('END') 
end; 
 
 
{--------------------------------------------------------------} 
 
{ Initialize } 
 
procedure Init; 
begin 
   LCount := 0; 
   GetChar; 
end; 



 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
   Init; 
   DoProgram; 
end. 
{--------------------------------------------------------------} 
 
 
***************************************************************** 
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INTRODUCTION 
 
In Part V of this series,  we  took a look at control constructs, 
and developed parsing  routines  to  translate  them  into object 
code.    We  ended  up  with  a  nice,  relatively  rich  set  of 
constructs. 
 
As we left  the  parser,  though,  there  was one big hole in our 
capabilities:  we  did  not  address  the  issue  of  the  branch 
condition.  To fill the void,  I  introduced to you a dummy parse 
routine called Condition, which only served as a place-keeper for 
the real thing. 
 
One of the things we'll do in this session is  to  plug that hole 
by expanding Condition into a true parser/translator. 
 
 
THE PLAN 
 
We're going to  approach  this installment a bit differently than 
any of the others.    In those other installments, we started out 
immediately with experiments  using the Pascal compiler, building 
up the parsers from  very  rudimentary  beginnings to their final 
forms, without spending much time in planning  beforehand. That's 
called coding without specs, and it's usually frowned  upon.   We 
could get away with it before because the rules of arithmetic are 
pretty well established ...  we  know what a '+' sign is supposed 
to mean without having to discuss it at length.  The same is true 
for branches and  loops.    But  the  ways  in  which programming 
languages  implement  logic  vary quite a bit  from  language  to 
language.  So before we begin serious coding,  we'd  better first 
make up our minds what it is we want.  And the way to do  that is 
at the level of the BNF syntax rules (the GRAMMAR). 
 
 
THE GRAMMAR 
 
For some time  now,  we've been implementing BNF syntax equations 
for arithmetic expressions, without  ever  actually  writing them 
down all in one place.  It's time that we did so.  They are: 
 
 



     <expression> ::= <unary op> <term> [<addop> <term>]* 
     <term>       ::= <factor> [<mulop> factor]* 
     <factor>     ::= <integer> | <variable> | ( <expression> ) 
 
(Remember, the nice thing about  this grammar is that it enforces 
the operator precedence hierarchy  that  we  normally  expect for 
algebra.) 
 
Actually,  while we're on the subject, I'd  like  to  amend  this 
grammar a bit right now.   The  way we've handled the unary minus 
is  a  bit  awkward.  I've found that it's better  to  write  the 
grammar this way: 
 
 
  <expression>    ::= <term> [<addop> <term>]* 
  <term>          ::= <signed factor> [<mulop> factor]* 
  <signed factor> ::= [<addop>] <factor> 
  <factor>        ::= <integer> | <variable> | (<expression>) 
 
 
This puts the job of handling the unary minus onto  Factor, which 
is where it really belongs. 
 
This  doesn't  mean  that  you  have  to  go  back and recode the 
programs you've already written, although you're free to do so if 
you like.  But I will be using the new syntax from now on. 
 
Now, it probably won't come as  a  shock  to you to learn that we 
can define an analogous grammar for Boolean algebra.    A typical 
set or rules is: 
 
 
 <b-expression>::= <b-term> [<orop> <b-term>]* 
 <b-term>      ::= <not-factor> [AND <not-factor>]* 
 <not-factor>  ::= [NOT] <b-factor> 
 <b-factor>    ::= <b-literal> | <b-variable> | (<b-expression>) 
 
 
Notice that in this  grammar,  the  operator  AND is analogous to 
'*',  and  OR  (and exclusive OR) to '+'.  The  NOT  operator  is 
analogous to a unary  minus.    This  hierarchy is not absolutely 
standard ...  some  languages,  notably  Ada,  treat  all logical 
operators  as  having  the same precedence level ... but it seems 
natural. 
 
Notice also the slight difference between the way the NOT and the 
unary  minus  are  handled.    In  algebra,  the unary  minus  is 
considered to go with the whole term, and so  never  appears  but 
once in a given term. So an expression like 
 
                    a * -b 
 
or worse yet, 
                    a - -b 
 
is not allowed.  In Boolean algebra, though, the expression 
 



                    a AND NOT b 
 
makes perfect sense, and the syntax shown allows for that. 
 
 
RELOPS 
 
OK, assuming that you're willing to accept the grammar I've shown 
here,  we  now  have syntax rules for both arithmetic and Boolean 
algebra.    The  sticky part comes in when we have to combine the 
two.  Why do we have to do that?  Well, the whole subject came up 
because of the  need  to  process  the  "predicates" (conditions) 
associated with control statements such as the IF.  The predicate 
is required to have a Boolean value; that is, it must evaluate to 
either TRUE or FALSE.  The branch is  then  taken  or  not taken, 
depending  on  that  value.  What we expect to see  going  on  in 
procedure  Condition,  then,  is  the  evaluation  of  a  Boolean 
expression. 
 
But there's more to it than that.  A pure Boolean  expression can 
indeed be the predicate of a control statement ... things like 
 
 
          IF a AND NOT b THEN .... 
 
 
But more often, we see Boolean algebra show up in such things as 
 
 
     IF (x >= 0) and (x <= 100) THEN ... 
 
 
Here,  the  two  terms in parens are Boolean expressions, but the 
individual terms being compared:  x,  0, and 100,  are NUMERIC in 
nature.  The RELATIONAL OPERATORS >= and <= are the  catalysts by 
which the  Boolean  and  the  arithmetic  ingredients  get merged 
together. 
 
Now,  in the example above, the terms  being  compared  are  just 
that:  terms.    However,  in  general  each  side  can be a math 
expression.  So we can define a RELATION to be: 
 
 
     <relation> ::= <expression> <relop> <expression>  , 
 
 
where  the  expressions  we're  talking  about here are  the  old 
numeric type, and the relops are any of the usual symbols 
 
 
               =, <> (or !=), <, >, <=, and >= 
 
 
If you think about it a  bit,  you'll agree that, since this kind 
of predicate has a single Boolean value, TRUE or  FALSE,  as  its 
result, it is  really  just  another  kind  of factor.  So we can 
expand the definition of a Boolean factor above to read: 



 
 
    <b-factor> ::=    <b-literal> 
                    | <b-variable> 
                    | (<b-expression>) 
                    | <relation> 
 
 
THAT's the connection!  The relops and the  relation  they define 
serve to wed the two kinds of algebra.  It  is  worth noting that 
this implies a hierarchy  where  the  arithmetic expression has a 
HIGHER precedence that  a  Boolean factor, and therefore than all 
the  Boolean operators.    If you write out the precedence levels 
for all the operators, you arrive at the following list: 
 
 
          Level   Syntax Element     Operator 
 
          0       factor             literal, variable 
          1       signed factor      unary minus 
          2       term               *, / 
          3       expression         +, - 
          4       b-factor           literal, variable, relop 
          5       not-factor         NOT 
          6       b-term             AND 
          7       b-expression       OR, XOR 
 
 
If  we're willing to accept that  many  precedence  levels,  this 
 
 
grammar seems reasonable.  Unfortunately,  it  won't  work!   The 
grammar may be great in theory,  but  it's  no good at all in the 
practice of a top-down parser.  To see the problem,  consider the 
code fragment: 
 
 
     IF ((((((A + B + C) < 0 ) AND .... 
 
 
When the parser is parsing this code, it knows after it  sees the 
IF token that a Boolean expression is supposed to be next.  So it 
can set up to begin evaluating such an expression.  But the first 
expression in the example is an ARITHMETIC expression, A + B + C. 
What's worse, at the point that the parser has read this  much of 
the input line: 
 
 
     IF ((((((A   , 
 
 
it  still has no way of knowing which  kind  of  expression  it's 
dealing  with.  That won't do, because  we  must  have  different 
recognizers  for the two cases.  The  situation  can  be  handled 
without  changing  any  of  our  definitions, but only  if  we're 
willing to accept an arbitrary amount of backtracking to work our 
way out of bad guesses.  No compiler  writer  in  his  right mind 



would agree to that. 
 
What's going  on  here  is  that  the  beauty and elegance of BNF 
grammar  has  met  face  to  face with the realities of  compiler 
technology. 
 
To  deal  with  this situation, compiler writers have had to make 
compromises  so  that  a  single  parser can handle  the  grammar 
without backtracking. 
 
 
FIXING THE GRAMMAR 
 
The  problem  that  we've  encountered  comes   up   because  our 
definitions of both arithmetic and Boolean factors permit the use 
of   parenthesized  expressions.    Since  the  definitions   are 
recursive,  we  can  end  up  with  any  number   of   levels  of 
parentheses, and the  parser  can't know which kind of expression 
it's dealing with. 
 
The  solution is simple, although it  ends  up  causing  profound 
changes to our  grammar.    We  can only allow parentheses in one 
kind  of factor.  The way to do  that  varies  considerably  from 
language  to  language.  This is one  place  where  there  is  NO 
agreement or convention to help us. 
 
When Niklaus Wirth designed Pascal, the desire was  to  limit the 
number of levels of precedence (fewer parse routines, after all). 
So the OR  and  exclusive  OR  operators are treated just like an 
Addop  and  processed   at   the  level  of  a  math  expression. 
Similarly, the AND is  treated  like  a  Mulop and processed with 
Term.  The precedence levels are 
 
 
          Level   Syntax Element     Operator 
 
          0       factor             literal, variable 
          1       signed factor      unary minus, NOT 
          2       term               *, /, AND 
          3       expression         +, -, OR 
 
 
Notice that there is only ONE set of syntax  rules,  applying  to 
both  kinds  of  operators.    According to this  grammar,  then, 
expressions like 
 
     x + (y AND NOT z) DIV 3 
 
are perfectly legal.  And, in  fact,  they  ARE ... as far as the 
parser  is  concerned.    Pascal  doesn't  allow  the  mixing  of 
arithmetic and Boolean variables, and things like this are caught 
at the SEMANTIC level, when it comes time to  generate  code  for 
them, rather than at the syntax level. 
 
The authors of C took  a  diametrically  opposite  approach: they 
treat the operators as  different,  and  have something much more 
akin  to our seven levels of precedence.  In fact, in C there are 



no fewer than 17 levels!  That's because C also has the operators 
'=', '+=' and its kin, '<<', '>>', '++', '--', etc.   Ironically, 
although in C the  arithmetic  and  Boolean operators are treated 
separately, the variables are  NOT  ...  there  are no Boolean or 
logical variables in  C,  so  a  Boolean  test can be made on any 
integer value. 
 
We'll do something that's  sort  of  in-between.   I'm tempted to 
stick  mostly  with  the Pascal approach, since  that  seems  the 
simplest from an implementation point  of view, but it results in 
some funnies that I never liked very much, such as the fact that, 
in the expression 
 
     IF (c >= 'A') and (c <= 'Z') then ... 
 
the  parens  above  are REQUIRED.  I never understood why before, 
and  neither my compiler nor any human  ever  explained  it  very 
well, either.  But now, we  can  all see that the 'and' operator, 
having the precedence of a multiply, has a higher  one  than  the 
relational operators, so without  the  parens  the  expression is 
equivalent to 
 
     IF c >= ('A' and c) <= 'Z' then 
 
which doesn't make sense. 
 
In  any  case,  I've  elected  to  separate  the  operators  into 
different levels, although not as many as in C. 
 
 
 <b-expression> ::= <b-term> [<orop> <b-term>]* 
 <b-term>       ::= <not-factor> [AND <not-factor>]* 
 <not-factor>   ::= [NOT] <b-factor> 
 <b-factor>     ::= <b-literal> | <b-variable> | <relation> 
 <relation>     ::= | <expression> [<relop> <expression] 
 <expression>   ::= <term> [<addop> <term>]* 
 <term>         ::= <signed factor> [<mulop> factor]* 
 <signed factor>::= [<addop>] <factor> 
 <factor>       ::= <integer> | <variable> | (<b-expression>) 
 
 
This grammar  results  in  the  same  set  of seven levels that I 
showed earlier.  Really, it's almost the same grammar ...  I just 
removed the option of parenthesized b-expressions  as  a possible 
b-factor, and added the relation as a legal form of b-factor. 
 
There is one subtle but crucial difference, which  is  what makes 
the  whole  thing  work.    Notice  the  square brackets  in  the 
definition  of a relation.  This means that  the  relop  and  the 
second expression are OPTIONAL. 
 
A strange consequence of this grammar (and one shared  by  C)  is 
that EVERY expression  is  potentially a Boolean expression.  The 
parser will always be looking  for a Boolean expression, but will 
"settle" for an arithmetic one.  To be honest,  that's  going  to 
slow down the parser, because it has to wade through  more layers 
of procedure calls.  That's  one reason why Pascal compilers tend 



to compile faster than C compilers.  If it's raw speed  you want, 
stick with the Pascal syntax. 
 
 
THE PARSER 
 
Now that we've gotten through the decision-making process, we can 
press on with development of a parser.  You've done this  with me 
several times now, so you know  the  drill: we begin with a fresh 
copy of the cradle, and begin  adding  procedures one by one.  So 
let's do it. 
 
We begin, as we did in the arithmetic case, by dealing  only with 
Boolean literals rather than variables.  This gives us a new kind 
of input token, so we're also going to need a new recognizer, and 
a  new procedure to read instances of that  token  type.    Let's 
start by defining the two new procedures: 
 
 
{--------------------------------------------------------------} 
{ Recognize a Boolean Literal } 
 
function IsBoolean(c: char): Boolean; 
begin 
   IsBoolean := UpCase(c) in ['T', 'F']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get a Boolean Literal } 
 
function GetBoolean: Boolean; 
var c: char; 
begin 
   if not IsBoolean(Look) then Expected('Boolean Literal'); 
   GetBoolean := UpCase(Look) = 'T'; 
   GetChar; 
end; 
{--------------------------------------------------------------} 
 
 
Type  these routines into your program.  You  can  test  them  by 
adding into the main program the print statement 
 
 
   WriteLn(GetBoolean); 
 
 
 
 
OK, compile the program and test it.   As  usual,  it's  not very 
impressive so far, but it soon will be. 
 
Now, when we were dealing with numeric data we had to  arrange to 
generate code to load the values into D0.  We need to do the same 
for Boolean data.   The  usual way to encode Boolean variables is 
to let 0 stand for FALSE,  and  some  other value for TRUE.  Many 



languages, such as C, use an  integer  1  to represent it.  But I 
prefer FFFF hex  (or  -1),  because  a bitwise NOT also becomes a 
Boolean  NOT.  So now we need to emit the right assembler code to 
load  those  values.    The  first cut at the Boolean  expression 
parser (BoolExpression, of course) is: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Expression } 
 
procedure BoolExpression; 
begin 
   if not IsBoolean(Look) then Expected('Boolean Literal'); 
   if GetBoolean then 
      EmitLn('MOVE #-1,D0') 
   else 
      EmitLn('CLR D0'); 
end; 
{---------------------------------------------------------------} 
 
 
Add  this procedure to your parser, and call  it  from  the  main 
program (replacing the  print  statement you had just put there). 
As you  can  see,  we  still don't have much of a parser, but the 
output code is starting to look more realistic. 
 
Next, of course, we have to expand the definition  of  a  Boolean 
expression.  We already have the BNF rule: 
 
 
 <b-expression> ::= <b-term> [<orop> <b-term>]* 
 
 
I prefer the Pascal versions of the "orops",  OR  and  XOR.   But 
since we are keeping to single-character tokens here, I'll encode 
those with '|' and  '~'.  The  next  version of BoolExpression is 
almost a direct copy of the arithmetic procedure Expression: 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Boolean OR } 
 
procedure BoolOr; 
begin 
   Match('|'); 
   BoolTerm; 
   EmitLn('OR (SP)+,D0'); 
end; 
 
 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an Exclusive Or } 
 
procedure BoolXor; 
begin 



   Match('~'); 
   BoolTerm; 
   EmitLn('EOR (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Expression } 
 
procedure BoolExpression; 
begin 
   BoolTerm; 
   while IsOrOp(Look) do begin 
      EmitLn('MOVE D0,-(SP)'); 
      case Look of 
       '|': BoolOr; 
       '~': BoolXor; 
      end; 
   end; 
end; 
{---------------------------------------------------------------} 
 
 
Note the new recognizer  IsOrOp,  which is also a copy, this time 
of IsAddOp: 
 
 
{--------------------------------------------------------------} 
{ Recognize a Boolean Orop } 
 
function IsOrop(c: char): Boolean; 
begin 
   IsOrop := c in ['|', '~']; 
end; 
{--------------------------------------------------------------} 
 
OK, rename the old  version  of  BoolExpression to BoolTerm, then 
enter  the  code  above.  Compile and test this version.  At this 
point, the  output  code  is  starting  to  look pretty good.  Of 
course, it doesn't make much sense to do a lot of Boolean algebra 
on  constant values, but we'll soon be  expanding  the  types  of 
Booleans we deal with. 
 
You've  probably  already  guessed  what  the next step  is:  The 
Boolean version of Term. 
 
Rename the current procedure BoolTerm to NotFactor, and enter the 
following new version of BoolTerm.  Note that is is  much simpler 
than  the  numeric  version,  since  there  is  no equivalent  of 
division. 
 
 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Term } 
 



procedure BoolTerm; 
begin 
   NotFactor; 
   while Look = '&' do begin 
      EmitLn('MOVE D0,-(SP)'); 
      Match('&'); 
      NotFactor; 
      EmitLn('AND (SP)+,D0'); 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
Now,  we're  almost  home.  We are  translating  complex  Boolean 
expressions, although only for constant values.  The next step is 
to allow for the NOT.  Write the following procedure: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Boolean Factor with NOT } 
 
procedure NotFactor; 
begin 
   if Look = '!' then begin 
      Match('!'); 
      BoolFactor; 
      EmitLn('EOR #-1,D0'); 
      end 
   else 
      BoolFactor; 
end; 
{--------------------------------------------------------------} 
 
And  rename  the  earlier procedure to BoolFactor.  Now try that. 
At this point  the  parser  should  be able to handle any Boolean 
expression you care to throw at it.  Does it?  Does it trap badly 
formed expressions? 
 
If you've  been  following  what  we  did  in the parser for math 
expressions, you know  that  what  we  did next was to expand the 
definition of a factor to include variables and parens.  We don't 
have  to do that for the Boolean  factor,  because  those  little 
items get taken care of by the next step.  It  takes  just  a one 
line addition to BoolFactor to take care of relations: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Boolean Factor } 
 
procedure BoolFactor; 
begin 
   if IsBoolean(Look) then 
      if GetBoolean then 
         EmitLn('MOVE #-1,D0') 
      else 
         EmitLn('CLR D0') 
      else Relation; 



end; 
{--------------------------------------------------------------} 
 
 
You  might be wondering when I'm going  to  provide  for  Boolean 
variables and parenthesized Boolean expressions.  The  answer is, 
I'm NOT!   Remember,  we  took  those out of the grammar earlier. 
Right now all I'm  doing  is  encoding  the grammar we've already 
agreed  upon.    The compiler itself can't  tell  the  difference 
between a Boolean variable  or  expression  and an arithmetic one 
... all of those will be handled by Relation, either way. 
 
 
Of course, it would help to have some code for Relation.  I don't 
feel comfortable, though,  adding  any  more  code  without first 
checking out what we already have.  So for now let's just write a 
dummy  version  of  Relation  that  does nothing except  eat  the 
current character, and write a little message: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Relation } 
 
procedure Relation; 
begin 
   WriteLn('<Relation>'); 
   GetChar; 
end; 
{--------------------------------------------------------------} 
 
OK, key  in  this  code  and  give  it a try.  All the old things 
should still work ... you should be able to generate the code for 
ANDs, ORs, and  NOTs.    In  addition, if you type any alphabetic 
character you should get a little <Relation>  place-holder, where 
a  Boolean factor should be.  Did you get that?  Fine, then let's 
move on to the full-blown version of Relation. 
 
To  get  that,  though, there is a bit of groundwork that we must 
lay first.  Recall that a relation has the form 
 
 
 <relation>     ::= | <expression> [<relop> <expression] 
 
 
Since  we have a new kind of operator, we're also going to need a 
new Boolean function to  recognize  it.    That function is shown 
below.  Because of the single-character limitation,  I'm sticking 
to the four operators  that  can be encoded with such a character 
(the "not equals" is encoded by '#'). 
 
 
{--------------------------------------------------------------} 
{ Recognize a Relop } 
 
function IsRelop(c: char): Boolean; 
begin 
   IsRelop := c in ['=', '#', '<', '>']; 



end; 
{--------------------------------------------------------------} 
 
 
Now, recall  that  we're  using  a zero or a -1 in register D0 to 
represent  a Boolean value, and also  that  the  loop  constructs 
expect the flags to be set to correspond.   In  implementing  all 
this on the 68000, things get a a little bit tricky. 
 
Since the loop constructs operate only on the flags, it  would be 
nice (and also quite  efficient)  just to set up those flags, and 
 
 
not load  anything  into  D0  at all.  This would be fine for the 
loops  and  branches,  but remember that the relation can be used 
ANYWHERE a Boolean factor could be  used.   We may be storing its 
result to a Boolean variable.  Since we can't know at  this point 
how the result is going to be used, we must allow for BOTH cases. 
 
Comparing numeric data  is  easy  enough  ...  the  68000  has an 
operation  for  that ... but it sets  the  flags,  not  a  value. 
What's more,  the  flags  will  always  be  set the same (zero if 
equal, etc.), while we need the zero flag set differently for the 
each of the different relops. 
 
The solution is found in the 68000 instruction Scc, which  sets a 
byte value to 0000 or FFFF (funny how that works!) depending upon 
the  result  of  the  specified   condition.    If  we  make  the 
destination byte to be D0, we get the Boolean value needed. 
 
Unfortunately,  there's one  final  complication:  unlike  almost 
every other instruction in the 68000 set, Scc does NOT  reset the 
condition flags to match the data being stored.  So we have to do 
one last step, which is to test D0 and set the flags to match it. 
It must seem to be a trip around the moon to get what we want: we 
first perform the test, then test the flags to set data  into D0, 
then test D0 to set the flags again.  It  is  sort of roundabout, 
but it's the most straightforward way to get the flags right, and 
after all it's only a couple of instructions. 
 
I  might  mention  here that this area is, in my opinion, the one 
that represents the biggest difference between the  efficiency of 
hand-coded assembler language and  compiler-generated  code.   We 
have  seen  already  that  we  lose   efficiency   in  arithmetic 
operations, although later I plan to show you how to improve that 
a  bit.    We've also seen that the control constructs themselves 
can be done quite efficiently  ... it's usually very difficult to 
improve  on  the  code generated for an  IF  or  a  WHILE.    But 
virtually every compiler I've ever seen generates  terrible code, 
compared to assembler, for the computation of a Boolean function, 
and particularly for relations.    The  reason  is just what I've 
hinted at above.  When I'm writing code in assembler, I  go ahead 
and perform the test the most convenient way I can, and  then set 
up the branch so that it goes the way it should.    In  effect, I 
"tailor"  every  branch  to the situation.  The compiler can't do 
that (practically), and it also can't know that we don't  want to 
store the result of the test as a Boolean variable.    So it must 



generate  the  code  in a very strict order, and it often ends up 
loading  the  result  as  a  Boolean  that  never gets  used  for 
anything. 
 
In  any  case,  we're now ready to look at the code for Relation. 
It's shown below with its companion procedures: 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Equals" } 
 
procedure Equals; 
begin 
   Match('='); 
   Expression; 
   EmitLn('CMP (SP)+,D0'); 
   EmitLn('SEQ D0'); 
end; 
 
 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Not Equals" } 
 
procedure NotEquals; 
begin 
   Match('#'); 
   Expression; 
   EmitLn('CMP (SP)+,D0'); 
   EmitLn('SNE D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Less Than" } 
 
procedure Less; 
begin 
   Match('<'); 
   Expression; 
   EmitLn('CMP (SP)+,D0'); 
   EmitLn('SGE D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Greater Than" } 
 
procedure Greater; 
begin 
   Match('>'); 
   Expression; 
   EmitLn('CMP (SP)+,D0'); 
   EmitLn('SLE D0'); 
end; 
 



 
{---------------------------------------------------------------} 
{ Parse and Translate a Relation } 
 
procedure Relation; 
begin 
   Expression; 
   if IsRelop(Look) then begin 
      EmitLn('MOVE D0,-(SP)'); 
      case Look of 
       '=': Equals; 
       '#': NotEquals; 
       '<': Less; 
       '>': Greater; 
      end; 
   EmitLn('TST D0'); 
   end; 
end; 
{---------------------------------------------------------------} 
 
Now, that call to  Expression  looks familiar!  Here is where the 
editor of your system comes in handy.  We have  already generated 
code  for  Expression  and its buddies in previous sessions.  You 
can  copy  them  into your file now.  Remember to use the single- 
character  versions.  Just to be  certain,  I've  duplicated  the 
arithmetic procedures below.  If  you're  observant,  you'll also 
see that I've changed them a little to make  them  correspond  to 
the latest version of the syntax.  This change is  NOT necessary, 
so  you  may  prefer  to  hold  off  on  that  until you're  sure 
 
 
everything is working. 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Identifier } 
 
procedure Ident; 
var Name: char; 
begin 
   Name:= GetName; 
   if Look = '(' then begin 
      Match('('); 
      Match(')'); 
      EmitLn('BSR ' + Name); 
      end 
   else 
      EmitLn('MOVE ' + Name + '(PC),D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Factor } 
 
procedure Expression; Forward; 
 
procedure Factor; 



begin 
   if Look = '(' then begin 
      Match('('); 
      Expression; 
      Match(')'); 
      end 
   else if IsAlpha(Look) then 
      Ident 
   else 
      EmitLn('MOVE #' + GetNum + ',D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate the First Math Factor } 
 
 
procedure SignedFactor; 
begin 
   if Look = '+' then 
      GetChar; 
   if Look = '-' then begin 
      GetChar; 
      if IsDigit(Look) then 
         EmitLn('MOVE #-' + GetNum + ',D0') 
      else begin 
         Factor; 
         EmitLn('NEG D0'); 
      end; 
   end 
   else Factor; 
end; 
 
 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Multiply } 
 
procedure Multiply; 
begin 
   Match('*'); 
   Factor; 
   EmitLn('MULS (SP)+,D0'); 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Divide } 
 
procedure Divide; 
begin 
   Match('/'); 
   Factor; 
   EmitLn('MOVE (SP)+,D1'); 
   EmitLn('EXS.L D0'); 
   EmitLn('DIVS D1,D0'); 



end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Term } 
 
procedure Term; 
begin 
   SignedFactor; 
   while Look in ['*', '/'] do begin 
      EmitLn('MOVE D0,-(SP)'); 
      case Look of 
       '*': Multiply; 
       '/': Divide; 
      end; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate an Add } 
 
procedure Add; 
begin 
   Match('+'); 
   Term; 
   EmitLn('ADD (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Subtract } 
 
procedure Subtract; 
begin 
   Match('-'); 
   Term; 
   EmitLn('SUB (SP)+,D0'); 
   EmitLn('NEG D0'); 
end; 
 
 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
procedure Expression; 
begin 
   Term; 
   while IsAddop(Look) do begin 
      EmitLn('MOVE D0,-(SP)'); 
      case Look of 
       '+': Add; 
       '-': Subtract; 
      end; 
   end; 



end; 
{---------------------------------------------------------------} 
 
 
There you have it ... a parser that can  handle  both  arithmetic 
AND Boolean algebra, and things  that combine the two through the 
use of relops.   I suggest you file away a copy of this parser in 
a safe place for future reference, because in our next step we're 
going to be chopping it up. 
 
 
MERGING WITH CONTROL CONSTRUCTS 
 
At this point, let's go back to the file we had  previously built 
that parses control  constructs.    Remember  those  little dummy 
procedures called Condition and  Expression?    Now you know what 
goes in their places! 
 
I  warn you, you're going to have to  do  some  creative  editing 
here, so take your time and get it right.  What you need to do is 
to copy all of  the  procedures from the logic parser, from Ident 
through  BoolExpression, into the parser for control  constructs. 
Insert  them  at  the current location of Condition.  Then delete 
that  procedure,  as  well as the dummy Expression.  Next, change 
every call  to  Condition  to  refer  to  BoolExpression instead. 
Finally, copy the procedures IsMulop, IsOrOp, IsRelop, IsBoolean, 
and GetBoolean into place.  That should do it. 
 
Compile  the  resulting program and give it  a  try.    Since  we 
haven't  used  this  program in awhile, don't forget that we used 
single-character tokens for IF,  WHILE,  etc.   Also don't forget 
that any letter not a keyword just gets echoed as a block. 
 
Try 
 
     ia=bxlye 
 
which stands for "IF a=b X ELSE Y ENDIF". 
 
What do you think?  Did it work?  Try some others. 
 
 
ADDING ASSIGNMENTS 
 
As long as we're this far,  and  we already have the routines for 
expressions in place, we might  as well replace the "blocks" with 
real assignment statements.    We've already done that before, so 
it won't be too hard.   Before  taking that step, though, we need 
to fix something else. 
 
 
 
We're soon going to find  that the one-line "programs" that we're 
having to write here will really cramp our style.  At  the moment 
we  have  no  cure for that, because our parser doesn't recognize 
the end-of-line characters, the carriage return (CR) and the line 
feed (LF).  So before going any further let's plug that hole. 



 
There are  a  couple  of  ways to deal with the CR/LFs.  One (the 
C/Unix approach) is just to  treat them as additional white space 
characters  and  ignore  them.    That's actually not such a  bad 
approach,  but  it  does  sort  of produce funny results for  our 
parser as  it  stands  now.   If it were reading its input from a 
source file as  any  self-respecting  REAL  compiler  does, there 
would be no problem.  But we're reading input from  the keyboard, 
and we're sort of conditioned  to expect something to happen when 
we hit the return key.  It won't, if we just skip over the CR and 
LF  (try it).  So I'm going to use a different method here, which 
is NOT necessarily the  best  approach in the long run.  Consider 
it a temporary kludge until we're further along. 
 
Instead of skipping the CR/LF,  We'll let the parser go ahead and 
catch them, then  introduce  a  special  procedure,  analogous to 
SkipWhite, that skips them only in specified "legal" spots. 
 
Here's the procedure: 
 
 
{--------------------------------------------------------------} 
{ Skip a CRLF } 
 
procedure Fin; 
begin 
   if Look = CR then GetChar; 
   if Look = LF then GetChar; 
end; 
 
{--------------------------------------------------------------} 
 
 
Now, add two calls to Fin in procedure Block, like this: 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Statement Block } 
 
procedure Block(L: string); 
begin 
   while not(Look in ['e', 'l', 'u']) do begin 
      Fin; 
      case Look of 
       'i': DoIf(L); 
       'w': DoWhile; 
       'p': DoLoop; 
       'r': DoRepeat; 
       'f': DoFor; 
       'd': DoDo; 
       'b': DoBreak(L); 
       else Other; 
      end; 
      Fin; 
 end; 
end; 
{--------------------------------------------------------------} 



 
 
 
Now, you'll find that you  can use multiple-line "programs."  The 
only restriction is that you can't separate an IF or  WHILE token 
from its predicate. 
 
Now we're ready to include  the  assignment  statements.   Simply 
change  that  call  to  Other  in  procedure  Block  to a call to 
Assignment, and add  the  following procedure, copied from one of 
our  earlier  programs.     Note   that   Assignment   now  calls 
BoolExpression, so that we can assign Boolean variables. 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment; 
var Name: char; 
begin 
   Name := GetName; 
   Match('='); 
   BoolExpression; 
   EmitLn('LEA ' + Name + '(PC),A0'); 
   EmitLn('MOVE D0,(A0)'); 
end; 
{--------------------------------------------------------------} 
 
 
With  that change, you should now be  able  to  write  reasonably 
realistic-looking  programs,  subject  only  to our limitation on 
single-character tokens.  My original intention was to get rid of 
that limitation for you, too.  However, that's going to require a 
fairly major change to what we've  done  so  far.  We need a true 
lexical scanner, and that requires some structural changes.  They 
are not BIG changes that require us to  throw  away  all  of what 
we've done so far ... with care, it can be done with very minimal 
changes, in fact.  But it does require that care. 
 
This installment  has already gotten pretty long, and it contains 
some pretty heavy stuff, so I've decided to leave that step until 
next  time, when you've had a little more  time  to  digest  what 
we've done and are ready to start fresh. 
 
In the next installment, then,  we'll build a lexical scanner and 
eliminate the single-character  barrier  once and for all.  We'll 
also write our first complete  compiler, based on what we've done 
in this session.  See you then. 
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INTRODUCTION 
 
In the last installment, I left you with a  compiler  that  would 
ALMOST  work,  except  that  we  were  still  limited to  single- 
character tokens.  The purpose of  this  session is to get rid of 
that restriction, once and for all.  This means that we must deal 



with the concept of the lexical scanner. 
 
Maybe I should mention why we  need  a lexical scanner at all ... 
after all, we've been able to manage all right  without  one,  up 
till now, even when we provided for multi-character tokens. 
 
The ONLY reason, really, has to do with keywords.  It's a fact of 
computer life that the syntax for a keyword has the same  form as 
that  for  any  other identifier.  We can't tell until we get the 
complete word whether or not it  IS  a keyword.  For example, the 
variable IFILE and the keyword IF look just alike, until  you get 
to the third character.  In the examples to date, we  were always 
able to make  a  decision  based  upon the first character of the 
token, but that's  no  longer possible when keywords are present. 
We  need to know that a given string is a keyword BEFORE we begin 
to process it.  And that's why we need a scanner. 
 
In the last session, I also promised that  we  would  be  able to 
provide for normal tokens  without  making  wholesale  changes to 
what we have  already done.  I didn't lie ... we can, as you will 
see later.  But every time I set out to install these elements of 
the software into  the  parser  we  have already built, I had bad 
feelings about it.  The whole thing felt entirely too much like a 
band-aid.  I finally figured out what was causing the  problem: I 
was installing lexical scanning software without first explaining 
to you what scanning is all about, and what the alternatives are. 
Up  till  now, I have studiously avoided  giving  you  a  lot  of 
theory,  and  certainly  not  alternatives.    I  generally don't 
respond well to the textbooks that give you twenty-five different 
ways  to do something, but no clue as to which way best fits your 
needs.  I've tried to avoid that pitfall by just showing  you ONE 
method, that WORKS. 
 
But  this is an important area.  While  the  lexical  scanner  is 
hardly the most  exciting  part  of  a compiler, it often has the 
most  profound  effect  on  the  general  "look  & feel"  of  the 
language, since after all it's the  part  closest to the user.  I 
have a particular structure in mind for the scanner  to  be  used 
with  KISS.    It fits the look &  feel  that  I  want  for  that 
language.  But it may not work at  all  for  the  language YOU'RE 
cooking  up,  so  in this one case I feel that it's important for 
you to know your options. 
 
So I'm going to depart, again, from my  usual  format.    In this 
session we'll be getting  much  deeper  than usual into the basic 
theory of languages and  grammars.    I'll  also be talking about 
areas OTHER than compilers in  which  lexical  scanning  plays an 
important role.  Finally, I will show you  some  alternatives for 
the structure of the lexical scanner.  Then, and only  then, will 
we get back to our parser  from  the last installment.  Bear with 
me ... I think you'll find it's worth the wait.    In fact, since 
scanners have many applications  outside  of  compilers,  you may 
well find this to be the most useful session for you. 
 
 
LEXICAL SCANNING 
 



Lexical scanning is the process of scanning the  stream  of input 
characters and separating it  into  strings  called tokens.  Most 
compiler  texts  start  here,  and  devote  several  chapters  to 
discussing various ways to build scanners.  This approach has its 
place, but as you have already  seen,  there  is a lot you can do 
without ever even addressing the issue, and in  fact  the scanner 
we'll  end  up with here won't look  much  like  what  the  texts 
describe.  The reason?    Compiler  theory and, consequently, the 
programs resulting from it, must  deal with the most general kind 
of parsing rules.  We don't.  In the real  world,  it is possible 
to specify the language syntax in such a way that a pretty simple 
scanner will suffice.  And as always, KISS is our motto. 
 
Typically, lexical scanning is  done  in  a  separate part of the 
compiler, so that the parser per  se  sees only a stream of input 
tokens.  Now, theoretically it  is not necessary to separate this 
function from the rest of the parser.  There is  only  one set of 
syntax equations that define the  whole language, so in theory we 
could write the whole parser in one module. 
 
Why  the  separation?      The  answer  has  both  practical  and 
theoretical bases. 
 
In  1956,  Noam  Chomsky  defined  the  "Chomsky   Hierarchy"  of 
grammars.  They are: 
 
     o Type 0:  Unrestricted (e.g., English) 
 
     o Type 1:  Context-Sensitive 
 
     o Type 2:  Context-Free 
 
     o Type 3:  Regular 
 
A few features of the typical programming  language (particularly 
the older ones, such as FORTRAN) are Type  1,  but  for  the most 
part  all  modern  languages can be described using only the last 
two types, and those are all we'll be dealing with here. 
 
The  neat  part about these two types  is  that  there  are  very 
specific ways to parse them.  It has been shown that  any regular 
grammar can be parsed using a particular form of abstract machine 
called the state machine (finite  automaton).    We  have already 
implemented state machines in some of our recognizers. 
 
Similarly, Type 2 (context-free) grammars  can  always  be parsed 
using  a  push-down  automaton (a state machine  augmented  by  a 
stack).  We have  also  implemented  these  machines.  Instead of 
implementing  a literal stack, we have  relied  on  the  built-in 
stack associated with recursive coding to do the job, and that in 
fact is the preferred approach for top-down parsing. 
 
Now, it happens that in  real, practical grammars, the parts that 
qualify as  regular expressions tend to be the lower-level parts, 
such as the definition of an identifier: 
 
     <ident> ::= <letter> [ <letter> | <digit> ]* 



 
Since it takes a different kind of abstract machine to  parse the 
two  types  of  grammars, it makes sense to separate these lower- 
level functions into  a  separate  module,  the  lexical scanner, 
which is built around the idea of a state machine. The idea is to 
use the simplest parsing technique needed for the job. 
 
There is another, more practical  reason  for  separating scanner 
from  parser.   We like to think of the input source  file  as  a 
stream  of characters, which we process  right  to  left  without 
backtracking.  In practice that  isn't  possible.    Almost every 
language has certain keywords such as  IF,  WHILE, and END.  As I 
mentioned  earlier,    we  can't  really  know  whether  a  given 
character string is a keyword, until we've reached the end of it, 
as defined by a space or other delimiter.  So  in  that sense, we 
MUST  save  the  string long enough to find out whether we have a 
keyword or not.  That's a limited form of backtracking. 
 
So the structure of a conventional compiler involves splitting up 
the functions of  the  lower-level and higher-level parsing.  The 
lexical  scanner  deals  with  things  at  the  character  level, 
collecting characters into strings, etc., and passing  them along 
to the parser proper as indivisible tokens.  It's also considered 
normal to let the scanner have the job of identifying keywords. 
 
 
STATE MACHINES AND ALTERNATIVES 
 
I  mentioned  that  the regular expressions can be parsed using a 
state machine.   In  most  compiler  texts,  and  indeed  in most 
compilers as well, you will find this taken literally.   There is 
typically  a  real  implementation  of  the  state  machine, with 
integers used to define the current state, and a table of actions 
to  take   for  each  combination  of  current  state  and  input 
character.  If you  write  a compiler front end using the popular 
Unix tools LEX and YACC, that's  what  you'll get.  The output of 
LEX is a state machine implemented in C, plus a table  of actions 
corresponding to the input grammar given to LEX.  The YACC output 
is  similar  ...  a canned table-driven parser,  plus  the  table 
corresponding to the language syntax. 
 
That  is  not  the  only  choice,  though.     In   our  previous 
installments, you have seen over and over that it is  possible to 
implement  parsers  without  dealing  specifically  with  tables, 
stacks, or state variables.    In fact, in Installment V I warned 
you that if you  find  yourself needing these things you might be 
doing something wrong, and not taking advantage of  the  power of 
Pascal.  There are basically two ways to define a state machine's 
state: explicitly, with  a  state number or code, and implicitly, 
simply by virtue of the fact that I'm at a  certain  place in the 
code  (if  it's  Tuesday,  this  must be Belgium).  We've  relied 
heavily on the implicit approaches  before,  and  I  think you'll 
find that they work well here, too. 
 
In practice, it may not even be necessary to HAVE  a well-defined 
lexical scanner.  This isn't our first experience at dealing with 
multi-character tokens.   In  Installment  III,  we  extended our 



parser to provide  for  them,  and  we didn't even NEED a lexical 
scanner.    That  was  because  in that narrow context, we  could 
always tell, just  by  looking at the single lookahead character, 
whether  we  were  dealing  with  a  number,  a variable,  or  an 
operator.  In effect, we  built  a  distributed  lexical scanner, 
using procedures GetName and GetNum. 
 
With keywords present,  we  can't know anymore what we're dealing 
with, until the entire token is  read.    This leads us to a more 
localized  scanner; although,  as you will see,  the  idea  of  a 
distributed scanner still has its merits. 
 
 
SOME EXPERIMENTS IN SCANNING 
 
Before  getting  back  to our compiler,  it  will  be  useful  to 
experiment a bit with the general concepts. 
 
Let's  begin with the two definitions most  often  seen  in  real 
programming languages: 
 
     <ident> ::= <letter> [ <letter> | <digit> ]* 
     <number ::= [<digit>]+ 
 
(Remember, the '*' indicates zero or more occurences of the terms 
in brackets, and the '+', one or more.) 
 
We  have already dealt with similar  items  in  Installment  III. 
Let's begin (as usual) with a bare cradle.  Not  surprisingly, we 
are going to need a new recognizer: 
                               
 
{--------------------------------------------------------------} 
{ Recognize an Alphanumeric Character } 
 
function IsAlNum(c: char): boolean; 
begin 
   IsAlNum := IsAlpha(c) or IsDigit(c); 
end; 
{--------------------------------------------------------------} 
 
 
Using this let's write the following two routines, which are very 
similar to those we've used before: 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
function GetName: string; 
var x: string[8]; 
begin 
   x := ''; 
   if not IsAlpha(Look) then Expected('Name'); 
   while IsAlNum(Look) do begin 
     x := x + UpCase(Look); 
     GetChar; 



   end; 
   GetName := x; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNum: string; 
var x: string[16]; 
begin 
   x := ''; 
   if not IsDigit(Look) then Expected('Integer'); 
   while IsDigit(Look) do begin 
     x := x + Look; 
     GetChar; 
   end; 
   GetNum := x; 
end; 
{--------------------------------------------------------------} 
 
 
(Notice  that this version of GetNum returns  a  string,  not  an 
integer as before.) 
 
You  can  easily  verify that these routines work by calling them 
from the main program, as in 
 
     WriteLn(GetName); 
 
This  program  will  print any legal name typed in (maximum eight 
characters, since that's what we told GetName).   It  will reject 
anything else. 
 
Test the other routine similarly. 
 
 
WHITE SPACE 
 
We  also  have  dealt with embedded white space before, using the 
two  routines  IsWhite  and  SkipWhite.    Make  sure that  these 
routines are in your  current  version of the cradle, and add the 
the line 
 
     SkipWhite; 
 
at the end of both GetName and GetNum. 
 
Now, let's define the new procedure: 
 
 
{--------------------------------------------------------------} 
{ Lexical Scanner } 
 
Function Scan: string; 
begin 
   if IsAlpha(Look) then 



      Scan := GetName 
   else if IsDigit(Look) then 
      Scan := GetNum 
   else begin 
      Scan := Look; 
      GetChar; 
   end; 
   SkipWhite; 
end; 
{--------------------------------------------------------------} 
 
 
We can call this from the new main program: 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
 
begin 
   Init; 
   repeat 
      Token := Scan; 
      writeln(Token); 
   until Token = CR; 
end. 
{--------------------------------------------------------------} 
 
 
(You will have to add the declaration of the string Token  at the 
beginning of the program.  Make it any convenient length,  say 16 
characters.) 
 
Now,  run the program.  Note how the  input  string  is,  indeed, 
separated into distinct tokens. 
 
 
STATE MACHINES 
 
For  the  record,  a  parse  routine  like  GetName  does  indeed 
implement a state machine.  The state is implicit in  the current 
position in the code.  A very useful trick for visualizing what's 
going on is  the  syntax  diagram,  or  "railroad-track" diagram. 
It's a little difficult to draw  one  in this medium, so I'll use 
them very sparingly, but  the  figure  below  should give you the 
idea: 
 
 
           |-----> Other---------------------------> Error 
           | 
   Start -------> Letter ---------------> Other -----> Finish 
           ^                        V 
           |                        | 
           |<----- Letter <---------| 
           |                        | 
           |<----- Digit  <---------- 
 



 
As  you  can  see,  this  diagram  shows  how  the logic flows as 
characters  are  read.    Things  begin, of course, in the  start 
state, and end when  a  character  other  than an alphanumeric is 
found.  If  the  first  character  is not alpha, an error occurs. 
Otherwise the machine will continue looping until the terminating 
delimiter is found. 
 
Note  that at any point in the flow,  our  position  is  entirely 
dependent on the past  history  of the input characters.  At that 
point, the action to be taken depends only on the  current state, 
plus the current input character.  That's what make this  a state 
machine. 
 
Because of the difficulty of drawing  railroad-track  diagrams in 
this medium, I'll continue to  stick to syntax equations from now 
on.  But I highly recommend the diagrams to you for  anything you 
do that involves parsing.  After a little practice you  can begin 
to  see  how  to  write  a  parser  directly from  the  diagrams. 
Parallel paths get coded into guarded actions (guarded by IF's or 
CASE statements),  serial  paths  into  sequential  calls.   It's 
almost like working from a schematic. 
 
We didn't even discuss SkipWhite, which  was  introduced earlier, 
but it also is a simple state machine, as is GetNum.  So is their 
parent procedure, Scan.  Little machines make big machines. 
 
The neat thing that I'd like  you  to note is how painlessly this 
implicit approach creates these  state  machines.    I personally 
prefer it a lot over the table-driven approach.  It  also results 
is a small, tight, and fast scanner. 
 
 
NEWLINES 
 
Moving right along, let's modify  our scanner to handle more than 
one line.  As I mentioned last time, the most straightforward way 
to  do  this  is to simply treat the newline characters, carriage 
return  and line feed, as white space.  This is, in fact, the way 
the  C  standard  library  routine,  iswhite, works.   We  didn't 
actually try this  before.  I'd like to do it now, so you can get 
a feel for the results. 
 
To do this, simply modify the single executable  line  of IsWhite 
to read: 
 
 
   IsWhite := c in [' ', TAB, CR, LF]; 
 
 
We need to give the main  program  a new stop condition, since it 
will never see a CR.  Let's just use: 
 
 
   until Token = '.'; 
 
 



OK, compile this  program  and  run  it.   Try a couple of lines, 
terminated by the period.  I used: 
 
 
     now is the time 
     for all good men. 
 
Hey,  what  happened?   When I tried it, I didn't  get  the  last 
token, the period.  The program didn't halt.  What's more, when I 
pressed the  'enter'  key  a  few  times,  I still didn't get the 
period. 
 
If you're still stuck in your program, you'll find that  typing a 
period on a new line will terminate it. 
 
What's going on here?  The answer is  that  we're  hanging  up in 
SkipWhite.  A quick look at  that  routine will show that as long 
as we're typing null lines, we're going to just continue to loop. 
After SkipWhite encounters an LF,  it tries to execute a GetChar. 
But since the input buffer is now empty, GetChar's read statement 
insists  on  having  another  line.    Procedure  Scan  gets  the 
terminating period, all right,  but  it  calls SkipWhite to clean 
up, and SkipWhite won't return until it gets a non-null line. 
 
This kind of behavior is not quite as bad as it seems.  In a real 
compiler,  we'd  be  reading  from  an input file instead of  the 
console, and as long  as  we have some procedure for dealing with 
end-of-files, everything will come out  OK.  But for reading data 
from the console, the behavior is just too bizarre.  The  fact of 
the matter is that the C/Unix convention is  just  not compatible 
with the structure of  our  parser,  which  calls for a lookahead 
character.    The  code that the Bell  wizards  have  implemented 
doesn't use that convention, which is why they need 'ungetc'. 
 
OK, let's fix the problem.  To do that, we need to go back to the 
old definition of IsWhite (delete the CR and  LF  characters) and 
make  use  of  the procedure Fin that I introduced last time.  If 
it's not in your current version of the cradle, put it there now. 
 
Also, modify the main program to read: 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
 
begin 
   Init; 
   repeat 
      Token := Scan; 
      writeln(Token); 
      if Token = CR then Fin; 
   until Token = '.'; 
end. 
{--------------------------------------------------------------} 
 
 



Note the "guard"  test  preceding  the  call to Fin.  That's what 
makes the whole thing work, and ensures that we don't try to read 
a line ahead. 
                              
Try the code now. I think you'll like it better. 
 
If you refer to the code  we  did in the last installment, you'll 
find that I quietly sprinkled calls to Fin  throughout  the code, 
wherever  a line break was appropriate.  This  is  one  of  those 
areas that really affects the look  &  feel that I mentioned.  At 
this  point  I  would  urge  you  to  experiment  with  different 
arrangements  and  see  how  you  like  them.    If you want your 
language  to  be  truly  free-field,  then  newlines   should  be 
transparent.   In  this  case,  the  best  approach is to put the 
following lines at the BEGINNING of Scan: 
 
 
          while Look = CR do 
             Fin; 
 
 
If, on the other  hand,  you  want  a line-oriented language like 
Assembler, BASIC, or FORTRAN  (or  even  Ada...  note that it has 
comments terminated by newlines),  then  you'll  need for Scan to 
return CR's as tokens.  It  must  also  eat the trailing LF.  The 
best way to do that is to use this line,  again  at the beginning 
of Scan: 
 
          if Look = LF then Fin; 
 
 
For other conventions, you'll  have  to  use  other arrangements. 
In my example  of  the  last  session, I allowed newlines only at 
specific places, so I was somewhere in the middle ground.  In the 
rest of these sessions, I'll be picking ways  to  handle newlines 
that I happen to like, but I want you to know how to choose other 
ways for yourselves. 
 
 
OPERATORS 
 
We  could  stop now and have a  pretty  useful  scanner  for  our 
purposes.  In the fragments of KISS that we've built so  far, the 
only tokens that have multiple characters are the identifiers and 
numbers.    All  operators  were  single  characters.   The  only 
exception I can think of is the relops <=, >=,  and  <>, but they 
could be dealt with as special cases. 
 
Still, other languages have  multi-character  operators,  such as 
the ':=' of  Pascal or the '++' and '>>' of C.  So  while  we may 
not need multi-character operators, it's  nice to know how to get 
them if necessary. 
 
Needless to say, we  can  handle operators very much the same way 
as the other tokens.  Let's start with a recognizer: 
                              
 



{--------------------------------------------------------------} 
{ Recognize Any Operator } 
 
function IsOp(c: char): boolean; 
begin 
   IsOp := c in ['+', '-', '*', '/', '<', '>', ':', '=']; 
end; 
{--------------------------------------------------------------} 
 
 
It's important to  note  that  we  DON'T  have  to  include every 
possible  operator in this list.   For  example,  the  paretheses 
aren't  included, nor is the terminating  period.    The  current 
version of Scan handles single-character operators  just  fine as 
it is.  The list above includes only those  characters  that  can 
appear in multi-character operators.  (For specific languages, of 
course, the list can always be edited.) 
 
Now, let's modify Scan to read: 
 
 
{--------------------------------------------------------------} 
{ Lexical Scanner } 
 
Function Scan: string; 
begin 
   while Look = CR do 
      Fin; 
   if IsAlpha(Look) then 
      Scan := GetName 
   else if IsDigit(Look) then 
      Scan := GetNum 
   else if IsOp(Look) then 
      Scan := GetOp 
   else begin 
      Scan := Look; 
      GetChar; 
   end; 
   SkipWhite; 
end; 
{--------------------------------------------------------------} 
 
 
Try the program now.  You  will  find that any code fragments you 
care  to throw at it will be neatly  broken  up  into  individual 
tokens. 
 
 
LISTS, COMMAS AND COMMAND LINES 
 
Before getting back to the main thrust of our study, I'd  like to 
get on my soapbox for a moment. 
                              
How many times have you worked with a program or operating system 
that had rigid rules about how you must separate items in a list? 
(Try,  the  last  time  you  used MSDOS!)  Some programs  require 
spaces as delimiters, and  some  require  commas.   Worst of all, 



some  require  both,  in  different  places.    Most  are  pretty 
unforgiving about violations of their rules. 
 
I think this is inexcusable.  It's too  easy  to  write  a parser 
that will handle  both  spaces  and  commas  in  a  flexible way. 
Consider the following procedure: 
 
 
{--------------------------------------------------------------} 
{ Skip Over a Comma } 
 
procedure SkipComma; 
begin 
   SkipWhite; 
   if Look = ',' then begin 
      GetChar; 
      SkipWhite; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
This eight-line procedure will skip over  a  delimiter consisting 
of any number (including zero)  of spaces, with zero or one comma 
embedded in the string. 
 
TEMPORARILY, change the call to SkipWhite in Scan to  a  call  to 
SkipComma,  and  try  inputting some lists.   Works  nicely,  eh? 
Don't you wish more software authors knew about SkipComma? 
 
For the record, I found that adding the  equivalent  of SkipComma 
to my Z80 assembler-language programs took all of  6  (six) extra 
bytes of  code.    Even  in a 64K machine, that's not a very high 
price to pay for user-friendliness! 
 
I  think  you can see where I'm going here.  Even  if  you  never 
write a line of a compiler code in your life, there are places in 
every program where  you  can  use  the concepts of parsing.  Any 
program that processes a command line needs them.   In  fact,  if 
you  think  about  it for a bit, you'll have to conclude that any 
time  you  write  a program that processes  user  inputs,  you're 
defining a  language.  People communicate with languages, and the 
syntax implicit in your program  defines that language.  The real 
question  is:  are  you  going  to  define  it  deliberately  and 
explicitly, or just let it turn out to be  whatever  the  program 
ends up parsing? 
 
I claim that you'll have  a better, more user-friendly program if 
you'll take the time to define the syntax explicitly.  Write down 
the syntax equations or  draw  the  railroad-track  diagrams, and 
code the parser using the techniques I've shown you here.  You'll 
end  up with a better program, and it will be easier to write, to 
boot. 
 
 
GETTING FANCY 
 



OK, at this point we have a pretty nice lexical scanner that will 
break  an  input stream up into tokens.  We could use  it  as  it 
stands and have a servicable compiler.  But there are  some other 
aspects of lexical scanning that we need to cover. 
 
The main consideration is <shudder> efficiency.  Remember when we 
were dealing  with  single-character  tokens,  every  test  was a 
comparison of a single character, Look, with a byte constant.  We 
also used the Case statement heavily. 
 
With the multi-character tokens being returned by Scan, all those 
tests now become string comparisons.  Much slower.  And  not only 
slower, but more awkward, since  there is no string equivalent of 
the  Case  statement  in Pascal.  It seems especially wasteful to 
test for what used to be single characters ... the '=',  '+', and 
other operators ... using string comparisons. 
 
Using string comparison is not  impossible ... Ron Cain used just 
that approach in writing Small C.  Since we're  sticking  to  the 
KISS principle here, we would  be truly justified in settling for 
this  approach.    But then I would have failed to tell you about 
one of the key approaches used in "real" compilers. 
 
You have to remember: the lexical scanner is going to be called a 
_LOT_!   Once for every token in the  whole  source  program,  in 
fact.   Experiments  have  indicated  that  the  average compiler 
spends  anywhere  from 20% to 40% of  its  time  in  the  scanner 
routines.  If there were ever a place  where  efficiency deserves 
real consideration, this is it. 
 
For this reason, most compiler writers ask the lexical scanner to 
do  a  little  more work, by "tokenizing"  the input stream.  The 
idea  is  to  match every token  against  a  list  of  acceptable 
keywords  and operators, and return unique  codes  for  each  one 
recognized.  In the case of ordinary variable  names  or numbers, 
we  just return a code that says what kind of token they are, and 
save the actual string somewhere else. 
 
One  of the first things we're going to need is a way to identify 
keywords.  We can always do  it  with successive IF tests, but it 
surely would be nice  if  we  had  a general-purpose routine that 
could compare a given string with  a  table of keywords.  (By the 
way, we're also going  to  need such a routine later, for dealing 
with symbol tables.)  This  usually presents a problem in Pascal, 
because standard Pascal  doesn't  allow  for  arrays  of variable 
lengths.   It's  a  real  bother  to  have to declare a different 
search routine for every table.    Standard  Pascal  also doesn't 
allow for initializing arrays, so you tend to see code like 
 
     Table[1] := 'IF'; 
     Table[2] := 'ELSE'; 
     . 
     . 
     Table[n] := 'END'; 
 
which can get pretty old if there are many keywords. 
 



Fortunately, Turbo Pascal 4.0 has extensions that  eliminate both 
of  these  problems.   Constant arrays can be declared using TP's 
"typed constant" facility, and  the  variable  dimensions  can be 
handled with its C-like extensions for pointers. 
 
First, modify your declarations like this: 
 
 
{--------------------------------------------------------------} 
{ Type Declarations  } 
 
type Symbol = string[8]; 
 
     SymTab = array[1..1000] of Symbol; 
 
     TabPtr = ^SymTab; 
{--------------------------------------------------------------} 
 
 
(The dimension  used  in  SymTab  is  not  real ... no storage is 
allocated by the declaration itself,  and the number need only be 
"big enough.") 
 
Now, just beneath those declarations, add the following: 
 
 
{--------------------------------------------------------------} 
{ Definition of Keywords and Token Types } 
 
const KWlist: array [1..4] of Symbol = 
              ('IF', 'ELSE', 'ENDIF', 'END'); 
 
{--------------------------------------------------------------} 
 
 
Next, insert the following new function: 
 
 
{--------------------------------------------------------------} 
{ Table Lookup } 
 
{ If the input string matches a table entry, return the entry 
  index.  If not, return a zero.  } 
                              
function Lookup(T: TabPtr; s: string; n: integer): integer; 
var i: integer; 
    found: boolean; 
begin 
   found := false; 
   i := n; 
   while (i > 0) and not found do 
      if s = T^[i] then 
         found := true 
      else 
         dec(i); 
   Lookup := i; 
end; 



{--------------------------------------------------------------} 
 
 
To test it,  you  can  temporarily  change  the  main  program as 
follows: 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
 
begin 
   ReadLn(Token); 
   WriteLn(Lookup(Addr(KWList), Token, 4)); 
end. 
{--------------------------------------------------------------} 
 
 
Notice how Lookup is called: The Addr function sets up  a pointer 
to KWList, which gets passed to Lookup. 
 
OK, give this  a  try.    Since we're bypassing Scan here, you'll 
have to type the keywords in upper case to get any matches. 
 
Now that we can recognize keywords, the next thing is  to arrange 
to return codes for them. 
 
So what kind of code should we return?  There are really only two 
reasonable choices.  This seems like an ideal application for the 
Pascal enumerated type.   For  example,  you can define something 
like 
 
     SymType = (IfSym, ElseSym, EndifSym, EndSym, Ident, Number, 
                    Operator); 
 
and arrange to return a variable of this type.   Let's  give it a 
try.  Insert the line above into your type definitions. 
 
Now, add the two variable declarations: 
                              
 
    Token: Symtype;          { Current Token  } 
    Value: String[16];       { String Token of Look } 
 
 
Modify the scanner to read: 
 
 
{--------------------------------------------------------------} 
{ Lexical Scanner } 
 
procedure Scan; 
var k: integer; 
begin 
   while Look = CR do 
      Fin; 
   if IsAlpha(Look) then begin 



      Value := GetName; 
      k := Lookup(Addr(KWlist), Value, 4); 
      if k = 0 then 
         Token := Ident 
      else 
         Token := SymType(k - 1); 
      end 
   else if IsDigit(Look) then begin 
      Value := GetNum; 
      Token := Number; 
      end 
   else if IsOp(Look) then begin 
      Value := GetOp; 
      Token := Operator; 
      end 
   else begin 
      Value := Look; 
      Token := Operator; 
      GetChar; 
   end; 
   SkipWhite; 
end; 
{--------------------------------------------------------------} 
 
 
(Notice that Scan is now a procedure, not a function.) 
 
 
Finally, modify the main program to read: 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
   Init; 
   repeat 
      Scan; 
      case Token of 
        Ident: write('Ident '); 
        Number: Write('Number '); 
        Operator: Write('Operator '); 
        IfSym, ElseSym, EndifSym, EndSym: Write('Keyword '); 
      end; 
      Writeln(Value); 
   until Token = EndSym; 
end. 
{--------------------------------------------------------------} 
 
 
What we've done here is to replace the string Token  used earlier 
with an enumerated type. Scan returns the type in variable Token, 
and returns the string itself in the new variable Value. 
 
OK, compile this and give it a whirl.  If everything  goes right, 
you should see that we are now recognizing keywords. 
 



What  we  have  now is working right, and it was easy to generate 
from what  we  had  earlier.    However,  it still seems a little 
"busy" to me.  We can  simplify  things a bit by letting GetName, 
GetNum, GetOp, and Scan be  procedures  working  with  the global 
variables Token and Value, thereby eliminating the  local copies. 
It  also seems a little cleaner to move  the  table  lookup  into 
GetName.  The new form for the four procedures is, then: 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
procedure GetName; 
var k: integer; 
begin 
   Value := ''; 
   if not IsAlpha(Look) then Expected('Name'); 
   while IsAlNum(Look) do begin 
     Value := Value + UpCase(Look); 
     GetChar; 
   end; 
   k := Lookup(Addr(KWlist), Value, 4); 
   if k = 0 then 
      Token := Ident 
   else 
      Token := SymType(k-1); 
end; 
                              
{--------------------------------------------------------------} 
{ Get a Number } 
 
procedure GetNum; 
begin 
   Value := ''; 
   if not IsDigit(Look) then Expected('Integer'); 
   while IsDigit(Look) do begin 
     Value := Value + Look; 
     GetChar; 
   end; 
   Token := Number; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get an Operator } 
 
procedure GetOp; 
begin 
   Value := ''; 
   if not IsOp(Look) then Expected('Operator'); 
   while IsOp(Look) do begin 
     Value := Value + Look; 
     GetChar; 
   end; 
   Token := Operator; 
end; 
 



 
{--------------------------------------------------------------} 
{ Lexical Scanner } 
 
procedure Scan; 
var k: integer; 
begin 
   while Look = CR do 
      Fin; 
   if IsAlpha(Look) then 
      GetName 
   else if IsDigit(Look) then 
      GetNum 
   else if IsOp(Look) then 
      GetOp 
   else begin 
      Value := Look; 
      Token := Operator; 
      GetChar; 
   end; 
   SkipWhite; 
end; 
{--------------------------------------------------------------} 
                              
 
RETURNING A CHARACTER 
 
Essentially  every scanner I've ever seen  that  was  written  in 
Pascal  used  the  mechanism of an enumerated type that I've just 
described.  It is certainly  a workable mechanism, but it doesn't 
seem the simplest approach to me. 
 
For one thing, the  list  of possible symbol types can get pretty 
long. Here, I've used just one symbol, "Operator,"  to  stand for 
all of the operators, but I've seen other  designs  that actually 
return different codes for each one. 
 
There is, of course, another simple type that can be  returned as 
a  code: the character.  Instead  of  returning  the  enumeration 
value 'Operator' for a '+' sign, what's wrong with just returning 
the character itself?  A character is just as good a variable for 
encoding the different  token  types,  it  can  be  used  in case 
statements  easily, and it's sure a lot easier  to  type.    What 
could be simpler? 
 
Besides, we've already  had  experience with the idea of encoding 
keywords as single characters.  Our previous programs are already 
written  that  way,  so  using  this approach will  minimize  the 
changes to what we've already done. 
 
Some of you may feel that this idea of returning  character codes 
is too mickey-mouse.  I must  admit  it gets a little awkward for 
multi-character operators like '<='.   If you choose to stay with 
the  enumerated  type,  fine.  For the rest, I'd like to show you 
how to change what we've done above to support that approach. 
 
First, you can delete the SymType declaration now ... we won't be 



needing that.  And you can change the type of Token to char. 
 
Next, to replace SymType, add the following constant string: 
 
 
   const KWcode: string[5] = 'xilee'; 
 
 
(I'll be encoding all idents with the single character 'x'.) 
 
 
Lastly, modify Scan and its relatives as follows: 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
procedure GetName; 
begin 
   Value := ''; 
   if not IsAlpha(Look) then Expected('Name'); 
   while IsAlNum(Look) do begin 
     Value := Value + UpCase(Look); 
     GetChar; 
   end; 
   Token := KWcode[Lookup(Addr(KWlist), Value, 4) + 1]; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
procedure GetNum; 
begin 
   Value := ''; 
   if not IsDigit(Look) then Expected('Integer'); 
   while IsDigit(Look) do begin 
     Value := Value + Look; 
     GetChar; 
   end; 
   Token := '#'; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get an Operator } 
 
procedure GetOp; 
begin 
   Value := ''; 
   if not IsOp(Look) then Expected('Operator'); 
   while IsOp(Look) do begin 
     Value := Value + Look; 
     GetChar; 
   end; 
   if Length(Value) = 1 then 
      Token := Value[1] 



   else 
      Token := '?'; 
end; 
 
 
{--------------------------------------------------------------} 
{ Lexical Scanner } 
 
procedure Scan; 
var k: integer; 
begin 
   while Look = CR do 
      Fin; 
   if IsAlpha(Look) then 
      GetName 
   else if IsDigit(Look) then 
      GetNum 
   else if IsOp(Look) then begin 
      GetOp 
   else begin 
      Value := Look; 
      Token := '?'; 
      GetChar; 
   end; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
 
begin 
   Init; 
   repeat 
      Scan; 
      case Token of 
        'x': write('Ident '); 
        '#': Write('Number '); 
        'i', 'l', 'e': Write('Keyword '); 
        else Write('Operator '); 
      end; 
      Writeln(Value); 
   until Value = 'END'; 
end. 
{--------------------------------------------------------------} 
 
 
This program should  work  the  same  as the previous version.  A 
minor  difference  in  structure,  maybe,  but   it   seems  more 
straightforward to me. 
 
 
DISTRIBUTED vs CENTRALIZED SCANNERS 
 
The structure for the lexical scanner that I've just shown you is 
very conventional, and  about  99% of all compilers use something 



very  close  to it.  This is  not,  however,  the  only  possible 
structure, or even always the best one. 
                              
The problem with the  conventional  approach  is that the scanner 
has no knowledge of context.  For example,  it  can't distinguish 
between the assignment operator '=' and  the  relational operator 
'=' (perhaps that's why both C and Pascal  use  different strings 
for the  two).    All  the scanner can do is to pass the operator 
along  to  the  parser, which can hopefully tell from the context 
which operator is meant.    Similarly, a keyword like 'IF' has no 
place in the middle of a  math  expression, but if one happens to 
appear there, the scanner  will  see no problem with it, and will 
return it to the parser, properly encoded as an 'IF'. 
 
With this  kind  of  approach,  we  are  not really using all the 
information at our disposal.  In the middle of an expression, for 
example, the parser  "knows"  that  there  is no need to look for 
keywords,  but it has no way of telling the scanner that.  So the 
scanner  continues to do so.  This, of  course,  slows  down  the 
compilation. 
 
In real-world compilers, the  designers  often  arrange  for more 
information  to be passed between parser  and  scanner,  just  to 
avoid  this  kind of problem.  But  that  can  get  awkward,  and 
certainly destroys a lot of the modularity of the structure. 
 
The  alternative  is  to seek some  way  to  use  the  contextual 
information that comes from knowing where we are  in  the parser. 
This leads us  back  to  the  notion of a distributed scanner, in 
which various portions  of  the scanner are called depending upon 
the context. 
 
In KISS, as  in  most  languages,  keywords  ONLY  appear  at the 
beginning of a statement.  In places like  expressions,  they are 
not allowed.  Also, with one minor exception (the multi-character 
relops)  that  is  easily  handled,  all  operators   are  single 
characters, which means that we don't need GetOp at all. 
 
So it turns out  that  even  with  multi-character tokens, we can 
still always tell from the  current  lookahead  character exactly 
what kind of token is coming,  except  at the very beginning of a 
statement. 
 
Even at that point, the ONLY  kind  of  token we can accept is an 
identifier.  We need only to determine if that  identifier  is  a 
keyword or the target of an assignment statement. 
 
We end up, then, still needing only GetName and GetNum, which are 
used very much as we've used them in earlier installments. 
 
It may seem  at first to you that this is a step backwards, and a 
rather  primitive  approach.   In fact, it is an improvement over 
the classical scanner, since we're  using  the  scanning routines 
only where they're really needed.  In places  where  keywords are 
not allowed, we don't slow things down by looking for them. 
 
 



MERGING SCANNER AND PARSER 
 
Now that we've covered  all  of the theory and general aspects of 
lexical scanning that we'll be needing, I'm FINALLY ready to back 
up my claim that  we  can  accomodate multi-character tokens with 
minimal change to our previous work.  To keep  things  short  and 
simple I will restrict myself here to a subset of what we've done 
before; I'm allowing only one control construct (the  IF)  and no 
Boolean expressions.  That's enough to demonstrate the parsing of 
both keywords and expressions.  The extension to the full  set of 
constructs should be  pretty  apparent  from  what  we've already 
done. 
 
All  the  elements  of  the  program to parse this subset,  using 
single-character tokens, exist  already in our previous programs. 
I built it by judicious copying of these files,  but  I  wouldn't 
dare try to lead you through that process.  Instead, to avoid any 
confusion, the whole program is shown below: 
 
 
{--------------------------------------------------------------} 
program KISS; 
 
{--------------------------------------------------------------} 
{ Constant Declarations } 
 
const TAB = ^I; 
      CR  = ^M; 
      LF  = ^J; 
 
{--------------------------------------------------------------} 
{ Type Declarations  } 
 
type Symbol = string[8]; 
 
     SymTab = array[1..1000] of Symbol; 
 
     TabPtr = ^SymTab; 
 
 
{--------------------------------------------------------------} 
{ Variable Declarations } 
 
var Look  : char;              { Lookahead Character } 
    Lcount: integer;           { Label Counter       } 
 
 
{--------------------------------------------------------------} 
{ Read New Character From Input Stream } 
 
procedure GetChar; 
begin 
   Read(Look); 
end; 
                              
 
{--------------------------------------------------------------} 



{ Report an Error } 
 
procedure Error(s: string); 
begin 
   WriteLn; 
   WriteLn(^G, 'Error: ', s, '.'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Report Error and Halt } 
 
procedure Abort(s: string); 
begin 
   Error(s); 
   Halt; 
end; 
 
 
{--------------------------------------------------------------} 
{ Report What Was Expected } 
 
procedure Expected(s: string); 
begin 
   Abort(s + ' Expected'); 
end; 
 
{--------------------------------------------------------------} 
{ Recognize an Alpha Character } 
 
function IsAlpha(c: char): boolean; 
begin 
   IsAlpha := UpCase(c) in ['A'..'Z']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Decimal Digit } 
 
function IsDigit(c: char): boolean; 
begin 
   IsDigit := c in ['0'..'9']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an AlphaNumeric Character } 
 
function IsAlNum(c: char): boolean; 
begin 
   IsAlNum := IsAlpha(c) or IsDigit(c); 
end; 
                              
{--------------------------------------------------------------} 
{ Recognize an Addop } 
 
function IsAddop(c: char): boolean; 



begin 
   IsAddop := c in ['+', '-']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Mulop } 
 
function IsMulop(c: char): boolean; 
begin 
   IsMulop := c in ['*', '/']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize White Space } 
 
function IsWhite(c: char): boolean; 
begin 
   IsWhite := c in [' ', TAB]; 
end; 
 
 
{--------------------------------------------------------------} 
{ Skip Over Leading White Space } 
 
procedure SkipWhite; 
begin 
   while IsWhite(Look) do 
      GetChar; 
end; 
 
 
{--------------------------------------------------------------} 
{ Match a Specific Input Character } 
 
procedure Match(x: char); 
begin 
   if Look <> x then Expected('''' + x + ''''); 
   GetChar; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Skip a CRLF } 
 
procedure Fin; 
begin 
   if Look = CR then GetChar; 
   if Look = LF then GetChar; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 



 
function GetName: char; 
begin 
   while Look = CR do 
      Fin; 
   if not IsAlpha(Look) then Expected('Name'); 
   Getname := UpCase(Look); 
   GetChar; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNum: char; 
begin 
   if not IsDigit(Look) then Expected('Integer'); 
   GetNum := Look; 
   GetChar; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Generate a Unique Label } 
 
function NewLabel: string; 
var S: string; 
begin 
   Str(LCount, S); 
   NewLabel := 'L' + S; 
   Inc(LCount); 
end; 
 
 
{--------------------------------------------------------------} 
{ Post a Label To Output } 
 
procedure PostLabel(L: string); 
begin 
   WriteLn(L, ':'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Output a String with Tab } 
                              
procedure Emit(s: string); 
begin 
   Write(TAB, s); 
end; 
 
 
{--------------------------------------------------------------} 
 
{ Output a String with Tab and CRLF } 



 
procedure EmitLn(s: string); 
begin 
   Emit(s); 
   WriteLn; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Identifier } 
 
procedure Ident; 
var Name: char; 
begin 
   Name := GetName; 
   if Look = '(' then begin 
      Match('('); 
      Match(')'); 
      EmitLn('BSR ' + Name); 
      end 
   else 
      EmitLn('MOVE ' + Name + '(PC),D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Factor } 
 
procedure Expression; Forward; 
 
procedure Factor; 
begin 
   if Look = '(' then begin 
      Match('('); 
      Expression; 
      Match(')'); 
      end 
   else if IsAlpha(Look) then 
      Ident 
   else 
      EmitLn('MOVE #' + GetNum + ',D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate the First Math Factor } 
 
 
procedure SignedFactor; 
var s: boolean; 
begin 
   s := Look = '-'; 
   if IsAddop(Look) then begin 
      GetChar; 
      SkipWhite; 
   end; 
   Factor; 



   if s then 
      EmitLn('NEG D0'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Multiply } 
 
procedure Multiply; 
begin 
   Match('*'); 
   Factor; 
   EmitLn('MULS (SP)+,D0'); 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Divide } 
 
procedure Divide; 
begin 
   Match('/'); 
   Factor; 
   EmitLn('MOVE (SP)+,D1'); 
   EmitLn('EXS.L D0'); 
   EmitLn('DIVS D1,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Completion of Term Processing  (called by Term and FirstTerm } 
 
procedure Term1; 
begin 
   while IsMulop(Look) do begin 
      EmitLn('MOVE D0,-(SP)'); 
      case Look of 
       '*': Multiply; 
       '/': Divide; 
      end; 
   end; 
end; 
                              
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Term } 
 
procedure Term; 
begin 
   Factor; 
   Term1; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Term with Possible Leading Sign } 
 



procedure FirstTerm; 
begin 
   SignedFactor; 
   Term1; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate an Add } 
 
procedure Add; 
begin 
   Match('+'); 
   Term; 
   EmitLn('ADD (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Subtract } 
 
procedure Subtract; 
begin 
   Match('-'); 
   Term; 
   EmitLn('SUB (SP)+,D0'); 
   EmitLn('NEG D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
procedure Expression; 
begin 
   FirstTerm; 
   while IsAddop(Look) do begin 
      EmitLn('MOVE D0,-(SP)'); 
      case Look of 
       '+': Add; 
       '-': Subtract; 
      end; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Condition } 
{ This version is a dummy } 
 
Procedure Condition; 
begin 
   EmitLn('Condition'); 
end; 
 
 
{---------------------------------------------------------------} 



{ Recognize and Translate an IF Construct } 
 
procedure Block; 
 Forward; 
 
procedure DoIf; 
var L1, L2: string; 
begin 
   Match('i'); 
   Condition; 
   L1 := NewLabel; 
   L2 := L1; 
   EmitLn('BEQ ' + L1); 
   Block; 
   if Look = 'l' then begin 
      Match('l'); 
      L2 := NewLabel; 
      EmitLn('BRA ' + L2); 
      PostLabel(L1); 
      Block; 
   end; 
   PostLabel(L2); 
   Match('e'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment; 
var Name: char; 
begin 
   Name := GetName; 
   Match('='); 
   Expression; 
   EmitLn('LEA ' + Name + '(PC),A0'); 
   EmitLn('MOVE D0,(A0)'); 
end; 
                              
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Statement Block } 
 
procedure Block; 
begin 
   while not(Look in ['e', 'l']) do begin 
      case Look of 
       'i': DoIf; 
       CR: while Look = CR do 
              Fin; 
       else Assignment; 
      end; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 



{ Parse and Translate a Program } 
 
procedure DoProgram; 
begin 
   Block; 
   if Look <> 'e' then Expected('END'); 
   EmitLn('END') 
end; 
 
 
{--------------------------------------------------------------} 
 
{ Initialize } 
 
procedure Init; 
begin 
   LCount := 0; 
   GetChar; 
end; 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
   Init; 
   DoProgram; 
end. 
{--------------------------------------------------------------} 
 
 
A couple of comments: 
 
 (1) The form for the expression parser,  using  FirstTerm, etc., 
     is  a  little  different from what you've seen before.  It's 
     yet another variation on the same theme.  Don't let it throw 
     you ... the change is not required for what follows. 
 
 (2) Note that, as usual, I had to add calls to Fin  at strategic 
     spots to allow for multiple lines. 
 
Before we proceed to adding the scanner, first copy this file and 
verify that it does indeed  parse things correctly.  Don't forget 
the "codes": 'i' for IF, 'l' for ELSE, and 'e' for END or ENDIF. 
 
If the program works, then let's press on.  In adding the scanner 
modules to the program, it helps  to  have a systematic plan.  In 
all  the  parsers  we've  written  to  date,  we've  stuck  to  a 
convention that the current lookahead character should  always be 
a non-blank character.  We  preload  the  lookahead  character in 
Init, and keep the "pump primed"  after  that.  To keep the thing 
working right at newlines, we had to modify this a bit  and treat 
the newline as a legal token. 
 
In the  multi-character version, the rule is similar: The current 
lookahead character should always be left at the BEGINNING of the 
next token, or at a newline. 



 
The multi-character version is shown next.  To get it,  I've made 
the following changes: 
 
 
 o Added the variables Token  and Value, and the type definitions 
   needed by Lookup. 
 
 o Added the definitions of KWList and KWcode. 
 
 o Added Lookup. 
 
 o Replaced GetName and GetNum by their multi-character versions. 
   (Note that the call  to  Lookup has been moved out of GetName, 
   so  that  it  will  not   be  executed  for  calls  within  an 
   expression.) 
 
 o Created a new,  vestigial  Scan that calls GetName, then scans 
   for keywords. 
 
 o Created  a  new  procedure,  MatchString,  that  looks  for  a 
   specific keyword.  Note that, unlike  Match,  MatchString does 
   NOT read the next keyword. 
 
 o Modified Block to call Scan. 
 
 o Changed the calls  to  Fin  a  bit.   Fin is now called within 
   GetName. 
 
Here is the program in its entirety: 
 
 
{--------------------------------------------------------------} 
program KISS; 
                              
{--------------------------------------------------------------} 
{ Constant Declarations } 
 
const TAB = ^I; 
      CR  = ^M; 
      LF  = ^J; 
 
{--------------------------------------------------------------} 
{ Type Declarations  } 
 
type Symbol = string[8]; 
 
     SymTab = array[1..1000] of Symbol; 
 
     TabPtr = ^SymTab; 
 
 
{--------------------------------------------------------------} 
{ Variable Declarations } 
 
var Look  : char;              { Lookahead Character } 
    Token : char;              { Encoded Token       } 



    Value : string[16];        { Unencoded Token     } 
    Lcount: integer;           { Label Counter       } 
 
 
{--------------------------------------------------------------} 
{ Definition of Keywords and Token Types } 
 
const KWlist: array [1..4] of Symbol = 
              ('IF', 'ELSE', 'ENDIF', 'END'); 
 
const KWcode: string[5] = 'xilee'; 
 
 
{--------------------------------------------------------------} 
{ Read New Character From Input Stream } 
 
procedure GetChar; 
begin 
   Read(Look); 
end; 
 
{--------------------------------------------------------------} 
{ Report an Error } 
 
procedure Error(s: string); 
begin 
   WriteLn; 
   WriteLn(^G, 'Error: ', s, '.'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Report Error and Halt } 
 
procedure Abort(s: string); 
begin 
   Error(s); 
   Halt; 
end; 
 
 
{--------------------------------------------------------------} 
{ Report What Was Expected } 
 
procedure Expected(s: string); 
begin 
   Abort(s + ' Expected'); 
end; 
 
{--------------------------------------------------------------} 
{ Recognize an Alpha Character } 
 
function IsAlpha(c: char): boolean; 
begin 
   IsAlpha := UpCase(c) in ['A'..'Z']; 
end; 
 



 
{--------------------------------------------------------------} 
{ Recognize a Decimal Digit } 
 
function IsDigit(c: char): boolean; 
begin 
   IsDigit := c in ['0'..'9']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an AlphaNumeric Character } 
 
function IsAlNum(c: char): boolean; 
begin 
   IsAlNum := IsAlpha(c) or IsDigit(c); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an Addop } 
 
function IsAddop(c: char): boolean; 
begin 
   IsAddop := c in ['+', '-']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Mulop } 
 
function IsMulop(c: char): boolean; 
begin 
   IsMulop := c in ['*', '/']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize White Space } 
 
function IsWhite(c: char): boolean; 
begin 
   IsWhite := c in [' ', TAB]; 
end; 
 
 
{--------------------------------------------------------------} 
{ Skip Over Leading White Space } 
 
procedure SkipWhite; 
begin 
   while IsWhite(Look) do 
      GetChar; 
end; 
 
 
{--------------------------------------------------------------} 



{ Match a Specific Input Character } 
 
procedure Match(x: char); 
begin 
   if Look <> x then Expected('''' + x + ''''); 
   GetChar; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Skip a CRLF } 
 
procedure Fin; 
begin 
   if Look = CR then GetChar; 
   if Look = LF then GetChar; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Table Lookup } 
 
function Lookup(T: TabPtr; s: string; n: integer): integer; 
var i: integer; 
    found: boolean; 
begin 
   found := false; 
   i := n; 
   while (i > 0) and not found do 
      if s = T^[i] then 
         found := true 
      else 
         dec(i); 
   Lookup := i; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
procedure GetName; 
begin 
   while Look = CR do 
      Fin; 
   if not IsAlpha(Look) then Expected('Name'); 
   Value := ''; 
   while IsAlNum(Look) do begin 
     Value := Value + UpCase(Look); 
     GetChar; 
   end; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 



{ Get a Number } 
 
procedure GetNum; 
begin 
   if not IsDigit(Look) then Expected('Integer'); 
   Value := ''; 
   while IsDigit(Look) do begin 
     Value := Value + Look; 
     GetChar; 
   end; 
   Token := '#'; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier and Scan it for Keywords } 
 
procedure Scan; 
begin 
   GetName; 
   Token := KWcode[Lookup(Addr(KWlist), Value, 4) + 1]; 
end; 
                              
 
{--------------------------------------------------------------} 
{ Match a Specific Input String } 
 
procedure MatchString(x: string); 
begin 
   if Value <> x then Expected('''' + x + ''''); 
end; 
 
 
{--------------------------------------------------------------} 
{ Generate a Unique Label } 
 
function NewLabel: string; 
var S: string; 
begin 
   Str(LCount, S); 
   NewLabel := 'L' + S; 
   Inc(LCount); 
end; 
 
 
{--------------------------------------------------------------} 
{ Post a Label To Output } 
 
procedure PostLabel(L: string); 
begin 
   WriteLn(L, ':'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Output a String with Tab } 



 
procedure Emit(s: string); 
begin 
   Write(TAB, s); 
end; 
 
 
{--------------------------------------------------------------} 
{ Output a String with Tab and CRLF } 
 
procedure EmitLn(s: string); 
begin 
   Emit(s); 
   WriteLn; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Identifier } 
 
procedure Ident; 
begin 
   GetName; 
   if Look = '(' then begin 
      Match('('); 
      Match(')'); 
      EmitLn('BSR ' + Value); 
      end 
   else 
      EmitLn('MOVE ' + Value + '(PC),D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Factor } 
 
procedure Expression; Forward; 
 
procedure Factor; 
begin 
   if Look = '(' then begin 
      Match('('); 
      Expression; 
      Match(')'); 
      end 
   else if IsAlpha(Look) then 
      Ident 
   else begin 
      GetNum; 
      EmitLn('MOVE #' + Value + ',D0'); 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate the First Math Factor } 
 



procedure SignedFactor; 
var s: boolean; 
begin 
   s := Look = '-'; 
   if IsAddop(Look) then begin 
      GetChar; 
      SkipWhite; 
   end; 
   Factor; 
   if s then 
      EmitLn('NEG D0'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Multiply } 
 
procedure Multiply; 
begin 
   Match('*'); 
   Factor; 
   EmitLn('MULS (SP)+,D0'); 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Divide } 
 
procedure Divide; 
begin 
   Match('/'); 
   Factor; 
   EmitLn('MOVE (SP)+,D1'); 
   EmitLn('EXS.L D0'); 
   EmitLn('DIVS D1,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Completion of Term Processing  (called by Term and FirstTerm } 
 
procedure Term1; 
begin 
   while IsMulop(Look) do begin 
      EmitLn('MOVE D0,-(SP)'); 
      case Look of 
       '*': Multiply; 
       '/': Divide; 
      end; 
   end; 
end; 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Term } 
 
procedure Term; 
begin 
   Factor; 



   Term1; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Term with Possible Leading Sign } 
 
procedure FirstTerm; 
begin 
   SignedFactor; 
   Term1; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate an Add } 
 
procedure Add; 
begin 
   Match('+'); 
   Term; 
   EmitLn('ADD (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Subtract } 
 
procedure Subtract; 
begin 
   Match('-'); 
   Term; 
   EmitLn('SUB (SP)+,D0'); 
   EmitLn('NEG D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
procedure Expression; 
begin 
   FirstTerm; 
   while IsAddop(Look) do begin 
      EmitLn('MOVE D0,-(SP)'); 
      case Look of 
       '+': Add; 
       '-': Subtract; 
      end; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Condition } 
{ This version is a dummy } 
 



Procedure Condition; 
begin 
   EmitLn('Condition'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate an IF Construct } 
 
procedure Block; Forward; 
 
 
procedure DoIf; 
var L1, L2: string; 
begin 
   Condition; 
   L1 := NewLabel; 
   L2 := L1; 
   EmitLn('BEQ ' + L1); 
   Block; 
   if Token = 'l' then begin 
      L2 := NewLabel; 
      EmitLn('BRA ' + L2); 
      PostLabel(L1); 
      Block; 
   end; 
   PostLabel(L2); 
   MatchString('ENDIF'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment; 
var Name: string; 
begin 
   Name := Value; 
   Match('='); 
   Expression; 
   EmitLn('LEA ' + Name + '(PC),A0'); 
   EmitLn('MOVE D0,(A0)'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Statement Block } 
 
procedure Block; 
begin 
   Scan; 
   while not (Token in ['e', 'l']) do begin 
      case Token of 
       'i': DoIf; 
       else Assignment; 
      end; 
      Scan; 



   end; 
end; 
 
 
{--------------------------------------------------------------} 
 
{ Parse and Translate a Program } 
 
procedure DoProgram; 
begin 
   Block; 
   MatchString('END'); 
   EmitLn('END') 
end; 
 
 
{--------------------------------------------------------------} 
 
{ Initialize } 
 
procedure Init; 
begin 
   LCount := 0; 
   GetChar; 
end; 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
   Init; 
   DoProgram; 
end. 
{--------------------------------------------------------------} 
 
 
Compare this program with its  single-character  counterpart.   I 
think you will agree that the differences are minor. 
 
 
CONCLUSION 
 
At this point, you have learned how to parse  and  generate  code 
for expressions,  Boolean  expressions,  and  control structures. 
You have now learned how to develop lexical scanners, and  how to 
incorporate their elements into a translator.  You have still not 
seen ALL the elements combined into one program, but on the basis 
of  what  we've  done before you should find it a straightforward 
matter to extend our earlier programs to include scanners. 
 
We are very  close  to  having  all  the elements that we need to 
build a real, functional compiler.  There are still a  few things 
missing, notably procedure  calls  and type definitions.  We will 
deal with  those  in  the  next  few  sessions.  Before doing so, 
however, I thought it  would  be fun to turn the translator above 
into a true compiler.  That's what we'll  be  doing  in  the next 



installment. 
 
Up till now, we've taken  a rather bottom-up approach to parsing, 
beginning with low-level constructs and working our way  up.   In 
the next installment,  I'll  also  be  taking a look from the top 
down,  and  we'll  discuss how the structure of the translator is 
altered by changes in the language definition. 
 
See you then. 
 
***************************************************************** 
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INTRODUCTION 
 
This is going to be a  different  kind of session than the others 
in our series on  parsing  and  compiler  construction.  For this 
session, there won't be  any  experiments to do or code to write. 
This  once,  I'd  like  to  just  talk  with  you  for  a  while. 
Mercifully, it will be a short  session,  and then we can take up 
where we left off, hopefully with renewed vigor. 
 
When  I  was  in college, I found that I could  always  follow  a 
prof's lecture a lot better if I knew where he was going with it. 
I'll bet you were the same. 
 
So I thought maybe it's about  time  I told you where we're going 
with this series: what's coming up in future installments, and in 
general what all  this  is  about.   I'll also share some general 
thoughts concerning the usefulness of what we've been doing. 
 
 
THE ROAD HOME 
 
So far, we've  covered  the parsing and translation of arithmetic 
expressions,  Boolean expressions, and combinations connected  by 
relational  operators.    We've also done the  same  for  control 
constructs.    In  all of this we've leaned heavily on the use of 
top-down, recursive  descent  parsing,  BNF  definitions  of  the 
syntax, and direct generation of assembly-language code.  We also 
learned the value of  such  tricks  as single-character tokens to 
help  us  see  the  forest  through  the  trees.    In  the  last 
installment  we dealt with lexical scanning,  and  I  showed  you 
simple but powerful ways to remove the single-character barriers. 
 
Throughout the whole study, I've emphasized  the  KISS philosophy 
... Keep It Simple, Sidney ... and I hope by now  you've realized 
just  how  simple  this stuff can really be.  While there are for 
sure areas of compiler  theory  that  are truly intimidating, the 
ultimate message of this series is that in practice you  can just 
politely  sidestep   many  of  these  areas.    If  the  language 
definition  cooperates  or,  as in this series, if you can define 
the language as you go, it's possible to write down  the language 
definition in BNF with reasonable ease.  And, as we've  seen, you 
can crank out parse procedures from the BNF just about as fast as 
you can type. 
 



As our compiler has taken form, it's gotten more parts,  but each 
part  is  quite small and simple, and  very  much  like  all  the 
others. 
 
At this point, we have many  of  the makings of a real, practical 
compiler.  As a matter of  fact,  we  already have all we need to 
build a toy  compiler  for  a  language as powerful as, say, Tiny 
BASIC.  In the next couple of installments, we'll  go  ahead  and 
define that language. 
 
To round out  the  series,  we  still  have a few items to cover. 
These include: 
 
   o Procedure calls, with and without parameters 
 
   o Local and global variables 
 
   o Basic types, such as character and integer types 
 
   o Arrays 
 
   o Strings 
 
   o User-defined types and structures 
 
   o Tree-structured parsers and intermediate languages 
 
   o Optimization 
 
These will all be  covered  in  future  installments.  When we're 
finished, you'll have all the tools you need to design  and build 
your own languages, and the compilers to translate them. 
 
I can't  design  those  languages  for  you,  but I can make some 
comments  and  recommendations.    I've  already  sprinkled  some 
throughout past installments.    You've  seen,  for  example, the 
control constructs I prefer. 
 
These constructs are going  to  be part of the languages I build. 
I  have  three  languages in mind at this point, two of which you 
will see in installments to come: 
 
TINY - A  minimal,  but  usable  language  on the order  of  Tiny 
       BASIC or Tiny C.  It won't be very practical, but  it will 
       have enough power to let you write and  run  real programs 
       that do something worthwhile. 
 
KISS - The  language  I'm  building for my  own  use.    KISS  is 
       intended to be  a  systems programming language.  It won't 
       have strong typing  or  fancy data structures, but it will 
       support most of  the  things  I  want to do with a higher- 
       order language (HOL), except perhaps writing compilers. 
                               
I've also  been  toying  for  years  with  the idea of a HOL-like 
assembler,  with  structured  control  constructs   and  HOL-like 
assignment statements.  That, in  fact, was the impetus behind my 
original foray into the jungles of compiler theory.  This one may 



never be built, simply  because  I've  learned that it's actually 
easier to implement a language like KISS, that only uses a subset 
of the CPU instructions.    As you know, assembly language can be 
bizarre  and  irregular  in the extreme, and a language that maps 
one-for-one onto it can be a real challenge.  Still,  I've always 
felt that the syntax used  in conventional assemblers is dumb ... 
why is 
 
     MOVE.L A,B 
 
better, or easier to translate, than 
 
     B=A ? 
 
I  think  it  would  be  an  interesting  exercise to  develop  a 
"compiler" that  would give the programmer complete access to and 
control over the full complement  of the CPU instruction set, and 
would allow you to generate  programs  as  efficient  as assembly 
language, without the pain  of  learning a set of mnemonics.  Can 
it be done?  I don't  know.  The  real question may be, "Will the 
resulting language be any  easier  to  write  than assembly"?  If 
not, there's no point in it.  I think that it  can  be  done, but 
I'm not completely sure yet how the syntax should look. 
 
Perhaps you have some  comments  or suggestions on this one.  I'd 
love to hear them. 
 
You probably won't be surprised to learn that I've already worked 
ahead in most  of the areas that we will cover.  I have some good 
news:  Things  never  get  much  harder than they've been so far. 
It's  possible  to  build a complete, working compiler for a real 
language, using nothing  but  the same kinds of techniques you've 
learned so far.  And THAT brings up some interesting questions. 
 
 
WHY IS IT SO SIMPLE? 
 
Before embarking  on this series, I always thought that compilers 
were just naturally complex computer  programs  ...  the ultimate 
challenge.  Yet the things we have done here have  usually turned 
out to be quite simple, sometimes even trivial. 
 
For awhile, I thought  is  was simply because I hadn't yet gotten 
into the meat  of  the  subject.    I had only covered the simple 
parts.  I will freely admit  to  you  that, even when I began the 
series,  I  wasn't  sure how far we would be able  to  go  before 
things got too complex to deal with in the ways  we  have so far. 
But at this point I've already  been  down the road far enough to 
see the end of it.  Guess what? 
                               
 
                     THERE ARE NO HARD PARTS! 
 
 
Then, I thought maybe it was because we were not  generating very 
good object  code.    Those  of  you  who have been following the 
series and trying sample compiles know that, while the code works 



and  is  rather  foolproof,  its  efficiency is pretty awful.   I 
figured that if we were  concentrating on turning out tight code, 
we would soon find all that missing complexity. 
 
To  some  extent,  that one is true.  In particular, my first few 
efforts at trying to improve efficiency introduced  complexity at 
an alarming rate.  But since then I've been tinkering around with 
some simple optimizations and I've found some that result in very 
respectable code quality, WITHOUT adding a lot of complexity. 
 
Finally, I thought that  perhaps  the  saving  grace was the "toy 
compiler" nature of the study.   I  have made no pretense that we 
were  ever  going  to be able to build a compiler to compete with 
Borland and Microsoft.  And yet, again, as I get deeper into this 
thing the differences are starting to fade away. 
 
Just  to make sure you get the message here, let me state it flat 
out: 
 
   USING THE TECHNIQUES WE'VE USED  HERE,  IT  IS  POSSIBLE TO 
   BUILD A PRODUCTION-QUALITY, WORKING COMPILER WITHOUT ADDING 
   A LOT OF COMPLEXITY TO WHAT WE'VE ALREADY DONE. 
 
 
Since  the series began I've received  some  comments  from  you. 
Most of them echo my own thoughts:  "This is easy!    Why  do the 
textbooks make it seem so hard?"  Good question. 
 
Recently, I've gone back and looked at some of those texts again, 
and even bought and read some new ones.  Each  time,  I come away 
with the same feeling: These guys have made it seem too hard. 
 
What's going on here?  Why does the whole thing seem difficult in 
the texts, but easy to us?    Are  we that much smarter than Aho, 
Ullman, Brinch Hansen, and all the rest? 
 
Hardly.  But we  are  doing some things differently, and more and 
more  I'm  starting  to appreciate the value of our approach, and 
the way that  it  simplifies  things.    Aside  from  the obvious 
shortcuts that I outlined in Part I, like single-character tokens 
and console I/O, we have  made some implicit assumptions and done 
some things differently from those who have designed compilers in 
the past. As it turns out, our approach makes life a lot easier. 
 
So why didn't all those other guys use it? 
 
You have to remember the context of some of the  earlier compiler 
development.  These people were working with very small computers 
of  limited  capacity.      Memory  was  very  limited,  the  CPU 
instruction  set  was  minimal, and programs ran  in  batch  mode 
rather  than  interactively.   As it turns out, these caused some 
key design decisions that have  really  complicated  the designs. 
Until recently,  I hadn't realized how much of classical compiler 
design was driven by the available hardware. 
 
Even in cases where these  limitations  no  longer  apply, people 
have  tended  to  structure their programs in the same way, since 



that is the way they were taught to do it. 
 
In  our case, we have started with a blank sheet of paper.  There 
is a danger there, of course,  that  you will end up falling into 
traps that other people have long since learned to avoid.  But it 
also has allowed us to  take different approaches that, partly by 
design  and partly by pure dumb luck, have  allowed  us  to  gain 
simplicity. 
 
Here are the areas that I think have  led  to  complexity  in the 
past: 
 
  o  Limited RAM Forcing Multiple Passes 
 
     I  just  read  "Brinch  Hansen  on  Pascal   Compilers"  (an 
     excellent book, BTW).  He  developed a Pascal compiler for a 
     PC, but he started the effort in 1981 with a 64K system, and 
     so almost every design decision  he made was aimed at making 
     the compiler fit  into  RAM.    To do this, his compiler has 
     three passes, one of which is the lexical scanner.  There is 
     no way he could, for  example, use the distributed scanner I 
     introduced  in  the last installment,  because  the  program 
     structure wouldn't allow it.  He also required  not  one but 
     two intermediate  languages,  to  provide  the communication 
     between phases. 
 
     All the early compiler writers  had to deal with this issue: 
     Break the compiler up into enough parts so that it  will fit 
     in memory.  When  you  have multiple passes, you need to add 
     data structures to support the  information  that  each pass 
     leaves behind for the next.   That adds complexity, and ends 
     up driving the  design.    Lee's  book,  "The  Anatomy  of a 
     Compiler,"  mentions a FORTRAN compiler developed for an IBM 
     1401.  It had no fewer than 63 separate passes!  Needless to 
     say,  in a compiler like this  the  separation  into  phases 
     would dominate the design. 
 
     Even in  situations  where  RAM  is  plentiful,  people have 
     tended  to  use  the same techniques because  that  is  what 
     they're familiar with.   It  wasn't  until Turbo Pascal came 
     along that we found how simple a compiler could  be  if  you 
     started with different assumptions. 
 
 
  o  Batch Processing 
                               
     In the early days, batch  processing was the only choice ... 
     there was no interactive computing.   Even  today, compilers 
     run in essentially batch mode. 
 
     In a mainframe compiler as  well  as  many  micro compilers, 
     considerable effort is expended on error recovery ... it can 
     consume as much as 30-40%  of  the  compiler  and completely 
     drive the design.  The idea is to avoid halting on the first 
     error, but rather to keep going at all costs,  so  that  you 
     can  tell  the  programmer about as many errors in the whole 
     program as possible. 



 
     All of that harks back to the days of the  early mainframes, 
     where turnaround time was measured  in hours or days, and it 
     was important to squeeze every last ounce of information out 
     of each run. 
 
     In this series, I've been very careful to avoid the issue of 
     error recovery, and instead our compiler  simply  halts with 
     an error message on  the  first error.  I will frankly admit 
     that it was mostly because I wanted to take the easy way out 
     and keep things simple.   But  this  approach,  pioneered by 
     Borland in Turbo Pascal, also has a lot going for it anyway. 
     Aside from keeping the  compiler  simple,  it also fits very 
     well  with   the  idea  of  an  interactive  system.    When 
     compilation is  fast, and especially when you have an editor 
     such as Borland's that  will  take you right to the point of 
     the error, then it makes a  lot  of sense to stop there, and 
     just restart the compilation after the error is fixed. 
 
 
  o  Large Programs 
 
     Early compilers were designed to handle  large  programs ... 
     essentially infinite ones.    In those days there was little 
     choice;  the  idea  of  subroutine  libraries  and  separate 
     compilation  were  still  in  the  future.      Again,  this 
     assumption led to  multi-pass designs and intermediate files 
     to hold the results of partial processing. 
 
     Brinch Hansen's  stated goal was that the compiler should be 
     able to compile itself.   Again, because of his limited RAM, 
     this drove him to a multi-pass design.  He needed  as little 
     resident compiler code as possible,  so  that  the necessary 
     tables and other data structures would fit into RAM. 
 
     I haven't stated this one yet, because there  hasn't  been a 
     need  ... we've always just read and  written  the  data  as 
     streams, anyway.  But  for  the  record,  my plan has always 
     been that, in  a  production compiler, the source and object 
     data should all coexist  in  RAM with the compiler, a la the 
     early Turbo Pascals.  That's why I've been  careful  to keep 
     routines like GetChar  and  Emit  as  separate  routines, in 
     spite of their small size.   It  will be easy to change them 
     to read to and write from memory. 
 
 
  o  Emphasis on Efficiency 
 
     John  Backus has stated that, when  he  and  his  colleagues 
     developed the original FORTRAN compiler, they KNEW that they 
     had to make it produce tight code.  In those days, there was 
     a strong sentiment against HOLs  and  in  favor  of assembly 
     language, and  efficiency was the reason.  If FORTRAN didn't 
     produce very good  code  by  assembly  standards,  the users 
     would simply refuse to use it.  For the record, that FORTRAN 
     compiler turned out to  be  one  of  the most efficient ever 
     built, in terms of code quality.  But it WAS complex! 



 
     Today,  we have CPU power and RAM size  to  spare,  so  code 
     efficiency is not  so  much  of  an  issue.    By studiously 
     ignoring this issue, we  have  indeed  been  able to Keep It 
     Simple.    Ironically,  though, as I have said, I have found 
     some optimizations that we can  add  to  the  basic compiler 
     structure, without having to add a lot of complexity.  So in 
     this  case we get to have our cake and eat it too:  we  will 
     end up with reasonable code quality, anyway. 
 
 
  o  Limited Instruction Sets 
 
     The early computers had primitive instruction sets.   Things 
     that  we  take  for granted, such as  stack  operations  and 
     indirect addressing, came only with great difficulty. 
 
     Example: In most compiler designs, there is a data structure 
     called the literal pool.  The compiler  typically identifies 
     all literals used in the program, and collects  them  into a 
     single data structure.    All references to the literals are 
     done  indirectly  to  this  pool.    At  the   end   of  the 
     compilation, the  compiler  issues  commands  to  set  aside 
     storage and initialize the literal pool. 
 
     We haven't had to address that  issue  at all.  When we want 
     to load a literal, we just do it, in line, as in 
 
          MOVE #3,D0 
 
     There is something to be said for the use of a literal pool, 
     particularly on a machine like  the 8086 where data and code 
     can  be separated.  Still, the whole  thing  adds  a  fairly 
     large amount of complexity with little in return. 
 
     Of course, without the stack we would be lost.  In  a micro, 
     both  subroutine calls and temporary storage depend  heavily 
     on the stack, and  we  have used it even more than necessary 
     to ease expression parsing. 
 
 
  o  Desire for Generality 
 
     Much of the content of the typical compiler text is taken up 
     with issues we haven't addressed here at all ... things like 
     automated  translation  of  grammars,  or generation of LALR 
     parse tables.  This is not simply because  the  authors want 
     to impress you.  There are good, practical  reasons  why the 
     subjects are there. 
 
     We have been concentrating on the use of a recursive-descent 
     parser to parse a  deterministic  grammar,  i.e.,  a grammar 
     that is not ambiguous and, therefore, can be parsed with one 
     level of lookahead.  I haven't made much of this limitation, 
     but  the  fact  is  that  this represents a small subset  of 
     possible grammars.  In fact,  there is an infinite number of 
     grammars that we can't parse using our techniques.    The LR 



     technique is a more powerful one, and can deal with grammars 
     that we can't. 
 
     In compiler theory, it's important  to know how to deal with 
     these  other  grammars,  and  how  to  transform  them  into 
     grammars  that  are  easier to deal with.  For example, many 
     (but not all) ambiguous  grammars  can  be  transformed into 
     unambiguous ones.  The way to do this is not always obvious, 
     though, and so many people  have  devoted  years  to develop 
     ways to transform them automatically. 
 
     In practice, these  issues  turn out to be considerably less 
     important.  Modern languages tend  to be designed to be easy 
     to parse, anyway.   That  was a key motivation in the design 
     of Pascal.   Sure,  there are pathological grammars that you 
     would be hard pressed to write unambiguous BNF  for,  but in 
     the  real  world  the best answer is probably to avoid those 
     grammars! 
 
     In  our  case,  of course, we have sneakily let the language 
     evolve  as  we  go, so we haven't painted ourselves into any 
     corners here.  You may not always have that luxury.   Still, 
     with a little  care  you  should  be able to keep the parser 
     simple without having to resort to automatic  translation of 
     the grammar. 
 
 
We have taken  a  vastly  different  approach in this series.  We 
started with a clean sheet  of  paper,  and  developed techniques 
that work in the context that  we  are in; that is, a single-user 
PC  with  rather  ample CPU power and RAM space.  We have limited 
ourselves to reasonable grammars that  are easy to parse, we have 
used the instruction set of the CPU to advantage, and we have not 
concerned ourselves with efficiency.  THAT's why it's been easy. 
 
Does this mean that we are forever doomed  to  be  able  to build 
only toy compilers?   No, I don't think so.  As I've said, we can 
add  certain   optimizations   without   changing   the  compiler 
structure.  If we want to process large files, we can  always add 
file  buffering  to do that.  These  things  do  not  affect  the 
overall program design. 
 
And I think  that's  a  key  factor.   By starting with small and 
limited  cases,  we  have been able to concentrate on a structure 
for  the  compiler  that is natural  for  the  job.    Since  the 
structure naturally fits the job, it is almost bound to be simple 
and transparent.   Adding  capability doesn't have to change that 
basic  structure.    We  can  simply expand things like the  file 
structure or add an optimization layer.  I guess  my  feeling  is 
that, back when resources were tight, the structures people ended 
up  with  were  artificially warped to make them work under those 
conditions, and weren't optimum  structures  for  the  problem at 
hand. 
 
 
CONCLUSION 
 



Anyway, that's my arm-waving  guess  as to how we've been able to 
keep things simple.  We started with something simple and  let it 
evolve  naturally,  without  trying  to   force   it   into  some 
traditional mold. 
 
We're going to  press on with this.  I've given you a list of the 
areas  we'll  be  covering in future installments.    With  those 
installments, you  should  be  able  to  build  complete, working 
compilers for just about any occasion, and build them simply.  If 
you REALLY want to build production-quality compilers,  you'll be 
able to do that, too. 
 
For those of you who are chafing at the bit for more parser code, 
I apologize for this digression.  I just thought  you'd  like  to 
have things put  into  perspective  a  bit.  Next time, we'll get 
back to the mainstream of the tutorial. 
 
So far, we've only looked at pieces of compilers,  and  while  we 
have  many  of  the  makings  of a complete language, we  haven't 
talked about how to put  it  all  together.    That  will  be the 
subject of our next  two  installments.  Then we'll press on into 
the new subjects I listed at the beginning of this installment. 
 
See you then. 
 
***************************************************************** 
*                                                               * 
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INTRODUCTION 
 
In  the  previous  installments,  we  have  learned  many of  the 
techniques required to  build  a full-blown compiler.  We've done 
both  assignment   statements   (with   Boolean   and  arithmetic 
expressions),  relational operators, and control constructs.   We 
still haven't  addressed procedure or function calls, but even so 
we  could  conceivably construct a  mini-language  without  them. 
I've  always  thought  it would be fun to see just  how  small  a 
language  one  could  build  that  would still be useful.   We're 
ALMOST in a position to do that now.  The  problem  is: though we 
know  how  to  parse and translate the constructs, we still don't 
know quite how to put them all together into a language. 
 
In those earlier installments, the  development  of  our programs 
had  a decidedly bottom-up flavor.  In  the  case  of  expression 
parsing,  for  example,  we  began  with  the  very lowest  level 
constructs, the individual constants  and  variables,  and worked 
our way up to more complex expressions. 
 
Most people regard  the  top-down design approach as being better 
than  the  bottom-up  one.  I do too,  but  the  way  we  did  it 
certainly seemed natural enough for the kinds of  things  we were 
parsing. 
 
You mustn't get  the  idea, though, that the incremental approach 
that  we've  been  using  in  all these tutorials  is  inherently 
bottom-up.  In  this  installment  I'd  like to show you that the 
approach can work just as well when applied from the top down ... 
maybe better.  We'll consider languages such as C and Pascal, and 
see how complete compilers can be built starting from the top. 
 



In the next installment, we'll  apply the same technique to build 
a  complete  translator  for a subset of the KISS language, which 
I'll be  calling  TINY.    But one of my goals for this series is 
that you will  not only be able to see how a compiler for TINY or 
KISS  works,  but  that you will also be able to design and build 
compilers for your own languages.  The C and Pascal examples will 
help.    One  thing I'd like you  to  see  is  that  the  natural 
structure of the compiler depends very much on the language being 
translated, so the simplicity and  ease  of  construction  of the 
compiler  depends  very  much  on  letting the language  set  the 
program structure. 
                               
It's  a bit much to produce a full C or Pascal compiler here, and 
we won't try.   But we can flesh out the top levels far enough so 
that you can see how it goes. 
 
Let's get started. 
 
 
THE TOP LEVEL 
 
One of the biggest  mistakes  people make in a top-down design is 
failing  to start at the true top.  They think they know what the 
overall structure of the  design  should be, so they go ahead and 
write it down. 
 
Whenever  I  start a new design, I always like to do  it  at  the 
absolute beginning.   In  program design language (PDL), this top 
level looks something like: 
 
 
     begin 
        solve the problem 
     end 
 
 
OK, I grant  you that this doesn't give much of a hint as to what 
the next level is, but I  like  to  write it down anyway, just to 
give me that warm feeling that I am indeed starting at the top. 
 
For our problem, the overall function of a compiler is to compile 
a complete program.  Any definition of the  language,  written in 
BNF,  begins here.  What does the top level BNF look like?  Well, 
that depends quite a bit on the language to be translated.  Let's 
take a look at Pascal. 
 
 
THE STRUCTURE OF PASCAL 
 
Most  texts  for  Pascal  include  a   BNF   or  "railroad-track" 
definition of the language.  Here are the first few lines of one: 
 
 
     <program> ::= <program-header> <block> '.' 
 
     <program-header> ::= PROGRAM <ident> 
 



     <block> ::= <declarations> <statements> 
 
 
We can write recognizers  to  deal  with  each of these elements, 
just as we've done before.  For each one, we'll use  our familiar 
single-character tokens to represent the input, then flesh things 
out a little at a time.    Let's begin with the first recognizer: 
the program itself. 
                               
To translate this, we'll  start  with a fresh copy of the Cradle. 
Since we're back to single-character  names, we'll just use a 'p' 
to stand for 'PROGRAM.' 
 
To a fresh copy of the cradle, add the following code, and insert 
a call to it from the main program: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate A Program } 
 
procedure Prog; 
var  Name: char; 
begin 
   Match('p');            { Handles program header part } 
   Name := GetName; 
   Prolog(Name); 
   Match('.'); 
   Epilog(Name); 
end; 
{--------------------------------------------------------------} 
 
 
The procedures  Prolog and Epilog perform whatever is required to 
let the program interface with the operating system,  so  that it 
can execute as a program.  Needless to  say,  this  part  will be 
VERY OS-dependent.  Remember, I've been emitting code for a 68000 
running under the OS I use, which is SK*DOS.   I  realize most of 
you are using PC's  and  would rather see something else, but I'm 
in this thing too deep to change now! 
 
Anyhow, SK*DOS is a  particularly  easy OS to interface to.  Here 
is the code for Prolog and Epilog: 
 
 
{--------------------------------------------------------------} 
{ Write the Prolog } 
 
procedure Prolog; 
begin 
   EmitLn('WARMST EQU $A01E'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Write the Epilog } 
 
procedure Epilog(Name: char); 



begin 
   EmitLn('DC WARMST'); 
   EmitLn('END ' + Name); 
end; 
{--------------------------------------------------------------} 
                               
As usual, add  this  code  and  try  out the "compiler."  At this 
point, there is only one legal input: 
 
 
     px.   (where x is any single letter, the program name) 
 
 
Well,  as  usual  our first effort is rather unimpressive, but by 
now  I'm sure you know that things  will  get  more  interesting. 
There is one important thing to  note:   THE OUTPUT IS A WORKING, 
COMPLETE, AND EXECUTABLE PROGRAM (at least after it's assembled). 
 
This  is  very  important.  The  nice  feature  of  the  top-down 
approach is that at any stage you can  compile  a  subset  of the 
complete language and get  a  program that will run on the target 
machine.    From here on, then, we  need  only  add  features  by 
fleshing out the language constructs.  It's all  very  similar to 
what we've been doing all along, except that we're approaching it 
from the other end. 
 
 
FLESHING IT OUT 
 
To flesh out  the  compiler,  we  only have to deal with language 
features  one by one.  I like to start with a stub procedure that 
does  nothing, then add detail in  incremental  fashion.    Let's 
begin  by  processing  a block, in accordance with its PDL above. 
We can do this in two stages.  First, add the null procedure: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Pascal Block } 
 
procedure DoBlock(Name: char); 
begin 
end; 
{--------------------------------------------------------------} 
 
 
and modify Prog to read: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate A Program } 
 
procedure Prog; 
var  Name: char; 
begin 
   Match('p'); 
   Name := GetName; 
   Prolog; 



   DoBlock(Name); 
   Match('.'); 
   Epilog(Name); 
end; 
{--------------------------------------------------------------} 
 
 
That certainly  shouldn't change the behavior of the program, and 
it doesn't.  But now the  definition  of Prog is complete, and we 
can proceed to flesh out DoBlock.  That's done right from its BNF 
definition: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Pascal Block } 
 
procedure DoBlock(Name: char); 
begin 
   Declarations; 
   PostLabel(Name); 
   Statements; 
end; 
{--------------------------------------------------------------} 
 
 
The  procedure  PostLabel  was  defined  in  the  installment  on 
branches.  Copy it into your cradle. 
 
I probably need to  explain  the  reason  for inserting the label 
where I have.  It has to do with the operation of SK*DOS.  Unlike 
some OS's,  SK*DOS allows the entry point to the main  program to 
be  anywhere in the program.  All you have to do is to give  that 
point a name.  The call  to  PostLabel puts that name just before 
the first executable statement  in  the  main  program.  How does 
SK*DOS know which of the many labels is the entry point, you ask? 
It's the one that matches the END statement  at  the  end  of the 
program. 
 
OK,  now  we  need  stubs  for  the  procedures Declarations  and 
Statements.  Make them null procedures as we did before. 
 
Does the program  still run the same?  Then we can move on to the 
next stage. 
 
 
DECLARATIONS 
 
The BNF for Pascal declarations is: 
 
 
     <declarations> ::= ( <label list>    | 
                          <constant list> | 
                          <type list>     | 
                          <variable list> | 
                          <procedure>     | 
                          <function>         )* 
                               



 
(Note  that  I'm  using the more liberal definition used by Turbo 
Pascal.  In the standard Pascal definition, each  of  these parts 
must be in a specific order relative to the rest.) 
 
As  usual,  let's  let a single character represent each of these 
declaration types.  The new form of Declarations is: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate the Declaration Part } 
 
procedure Declarations; 
begin 
   while Look in ['l', 'c', 't', 'v', 'p', 'f'] do 
      case Look of 
       'l': Labels; 
       'c': Constants; 
       't': Types; 
       'v': Variables; 
       'p': DoProcedure; 
       'f': DoFunction; 
      end; 
end; 
{--------------------------------------------------------------} 
 
 
Of course, we need stub  procedures for each of these declaration 
types.  This time,  they  can't  quite  be null procedures, since 
otherwise we'll end up with an infinite While loop.  At  the very 
least, each recognizer must  eat  the  character that invokes it. 
Insert the following procedures: 
 
 
{--------------------------------------------------------------} 
{ Process Label Statement } 
 
procedure Labels; 
begin 
   Match('l'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Process Const Statement } 
 
procedure Constants; 
begin 
   Match('c'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Process Type Statement } 
procedure Types; 
begin 
   Match('t'); 



end; 
 
 
{--------------------------------------------------------------} 
{ Process Var Statement } 
 
procedure Variables; 
begin 
   Match('v'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Process Procedure Definition } 
 
procedure DoProcedure; 
begin 
   Match('p'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Process Function Definition } 
 
procedure DoFunction; 
begin 
   Match('f'); 
end; 
{--------------------------------------------------------------} 
 
 
Now try out the  compiler  with a few representative inputs.  You 
can  mix  the  declarations any way you like, as long as the last 
character  in  the  program is'.' to  indicate  the  end  of  the 
program.  Of course,  none  of  the declarations actually declare 
anything, so you don't need  (and can't use) any characters other 
than those standing for the keywords. 
 
We can flesh out the statement  part  in  a similar way.  The BNF 
for it is: 
 
 
     <statements> ::= <compound statement> 
 
     <compound statement> ::= BEGIN <statement> 
                                   (';' <statement>) END 
 
 
Note that statements can  begin  with  any identifier except END. 
So the first stub form of procedure Statements is: 
                               
 
{--------------------------------------------------------------} 
{ Parse and Translate the Statement Part } 
 
procedure Statements; 
begin 



   Match('b'); 
   while Look <> 'e' do 
      GetChar; 
   Match('e'); 
end; 
{--------------------------------------------------------------} 
 
 
At  this  point  the  compiler   will   accept   any   number  of 
declarations, followed by the  BEGIN  block  of the main program. 
This  block  itself  can contain any characters at all (except an 
END), but it must be present. 
 
The simplest form of input is now 
 
     'pxbe.' 
 
Try  it.    Also  try  some  combinations  of  this.   Make  some 
deliberate errors and see what happens. 
 
At this point you should be beginning to see the drill.  We begin 
with a stub translator to process a program, then  we  flesh  out 
each procedure in turn,  based  upon its BNF definition.  Just as 
the lower-level BNF definitions add detail and elaborate upon the 
higher-level ones, the lower-level  recognizers  will  parse more 
detail  of  the  input  program.    When  the  last stub has been 
expanded,  the  compiler  will  be  complete.    That's  top-down 
design/implementation in its purest form. 
 
You might note that even though we've been adding procedures, the 
output of the program hasn't changed.  That's as  it  should  be. 
At these  top  levels  there  is  no  emitted code required.  The 
recognizers are  functioning as just that: recognizers.  They are 
accepting input sentences, catching bad ones, and channeling good 
input to the right places, so  they  are  doing their job.  If we 
were to pursue this a bit longer, code would start to appear. 
 
The  next  step  in our expansion should  probably  be  procedure 
Statements.  The Pascal definition is: 
 
 
    <statement> ::= <simple statement> | <structured statement> 
 
    <simple statement> ::= <assignment> | <procedure call> | null 
 
    <structured statement> ::= <compound statement> | 
                               <if statement>       | 
                               <case statement>     | 
                               <while statement>    | 
                               <repeat statement>   | 
                               <for statement>      | 
                               <with statement> 
 
 
These  are  starting  to look familiar.  As a matter of fact, you 
have already gone  through  the process of parsing and generating 
code for both assignment statements and control structures.  This 



is where the top level meets our bottom-up  approach  of previous 
sessions.  The constructs will be a little  different  from those 
we've  been  using  for KISS, but the differences are nothing you 
can't handle. 
 
I  think  you can get the picture now as to the  procedure.    We 
begin with a complete BNF  description of the language.  Starting 
at  the  top  level, we code  up  the  recognizer  for  that  BNF 
statement, using stubs  for  the next-level recognizers.  Then we 
flesh those lower-level statements out one by one. 
 
As it happens, the definition of Pascal is  very  compatible with 
the  use of BNF, and BNF descriptions  of  the  language  abound. 
Armed  with  such   a   description,  you  will  find  it  fairly 
straightforward to continue the process we've begun. 
 
You  might  have  a go at fleshing a few of these constructs out, 
just  to get a feel for it.  I don't expect you  to  be  able  to 
complete a Pascal compiler  here  ...  there  are too many things 
such  as  procedures  and types that we haven't addressed yet ... 
but  it  might  be helpful to try some of the more familiar ones. 
It will do  you  good  to  see executable programs coming out the 
other end. 
 
If I'm going to address those issues that we haven't covered yet, 
I'd rather  do  it  in  the context of KISS.  We're not trying to 
build a complete Pascal  compiler  just yet, so I'm going to stop 
the expansion of Pascal here.    Let's  take  a  look  at  a very 
different language. 
 
 
THE STRUCTURE OF C 
 
The C language is quite another matter, as you'll see.   Texts on 
C  rarely  include  a BNF definition of  the  language.  Probably 
that's because the language is quite hard to write BNF for. 
 
One reason I'm showing you these structures now is so that  I can 
impress upon you these two facts: 
 
 (1) The definition of  the  language drives the structure of the 
     compiler.  What works for one language may be a disaster for 
     another.    It's  a very bad idea to try to  force  a  given 
     structure upon the compiler.  Rather, you should let the BNF 
     drive the structure, as we have done here. 
                              
 (2) A language that is hard to write BNF for  will  probably  be 
     hard  to  write  a compiler for, as well.  C  is  a  popular 
     language,  and  it  has  a  reputation  for  letting you  do 
     virtually  anything that is possible to  do.    Despite  the 
     success of Small C, C is _NOT_ an easy language to parse. 
 
 
A C program has  less  structure than its Pascal counterpart.  At 
the top level, everything in C is a static declaration, either of 
data or of a function.  We can capture this thought like this: 
 



 
     <program> ::= ( <global declaration> )* 
 
     <global declaration> ::= <data declaration>  | 
                              <function> 
 
In Small C, functions  can  only have the default type int, which 
is not declared.  This makes  the  input easy to parse: the first 
token is either "int," "char," or the name  of  a  function.   In 
Small  C, the preprocessor commands are  also  processed  by  the 
compiler proper, so the syntax becomes: 
 
 
     <global declaration> ::= '#' <preprocessor command>  | 
                              'int' <data list>           | 
                              'char' <data list>          | 
                              <ident> <function body>     | 
 
 
Although we're really more interested in full C  here,  I'll show 
you the  code corresponding to this top-level structure for Small 
C. 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate A Program } 
 
procedure Prog; 
begin 
   while Look <> ^Z do begin 
      case Look of 
       '#': PreProc; 
       'i': IntDecl; 
       'c': CharDecl; 
      else DoFunction(Int); 
      end; 
   end; 
end; 
{--------------------------------------------------------------} 
 
Note that I've had to use a ^Z to indicate the end of the source. 
C has no keyword such as END or the '.' to otherwise indicate the 
end. 
                              
With full C,  things  aren't  even  this easy.  The problem comes 
about because in full C, functions can also have types.   So when 
the compiler sees a  keyword  like  "int,"  it still doesn't know 
whether to expect a  data  declaration  or a function definition. 
Things get more  complicated  since  the  next token may not be a 
name  ... it may start with an '*' or '(', or combinations of the 
two. 
 
More specifically, the BNF for full C begins with: 
 
 
     <program> ::= ( <top-level decl> )* 
 



     <top-level decl> ::= <function def> | <data decl> 
 
     <data decl> ::= [<class>] <type> <decl-list> 
 
     <function def> ::= [<class>] [<type>] <function decl> 
 
 
You  can  now  see the problem:   The  first  two  parts  of  the 
declarations for data and functions can be the same.   Because of 
the  ambiguity  in  the grammar as  written  above,  it's  not  a 
suitable  grammar  for  a  recursive-descent  parser.     Can  we 
transform it into one that is suitable?  Yes, with a little work. 
Suppose we write it this way: 
 
 
     <top-level decl> ::= [<class>] <decl> 
 
     <decl> ::= <type> <typed decl> | <function decl> 
 
     <typed decl> ::= <data list> | <function decl> 
 
 
We  can  build  a  parsing  routine  for  the   class   and  type 
definitions, and have them store away their findings  and  go on, 
without their ever having to "know" whether a function or  a data 
declaration is being processed. 
 
To begin, key in the following version of the main program: 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
   Init; 
   while Look <> ^Z do begin 
      GetClass; 
      GetType; 
      TopDecl; 
   end; 
end. 
 
{--------------------------------------------------------------} 
 
 
For the first round, just make the three procedures stubs that do 
nothing _BUT_ call GetChar. 
 
Does this program work?  Well, it would be hard put NOT to, since 
we're not really asking it to do anything.  It's been said that a 
C compiler will accept virtually any input without choking.  It's 
certainly true of THIS  compiler,  since in effect all it does is 
to eat input characters until it finds a ^Z. 
 
Next, let's make  GetClass  do something worthwhile.  Declare the 
global variable 
 



 
     var Class: char; 
 
 
and change GetClass to do the following: 
 
 
{--------------------------------------------------------------} 
{  Get a Storage Class Specifier } 
 
Procedure GetClass; 
begin 
   if Look in ['a', 'x', 's'] then begin 
      Class := Look; 
      GetChar; 
      end 
   else Class := 'a'; 
end; 
{--------------------------------------------------------------} 
 
 
Here, I've used three  single  characters  to represent the three 
storage classes "auto," "extern,"  and  "static."   These are not 
the only three possible classes ... there are also "register" and 
"typedef," but this should  give  you the picture.  Note that the 
default class is "auto." 
 
We  can  do  a  similar  thing  for  types.   Enter the following 
procedure next: 
 
 
{--------------------------------------------------------------} 
{  Get a Type Specifier } 
 
procedure GetType; 
begin 
   Typ := ' '; 
   if Look = 'u' then begin 
      Sign := 'u'; 
      Typ := 'i'; 
      GetChar; 
      end 
   else Sign := 's'; 
   if Look in ['i', 'l', 'c'] then begin 
      Typ := Look; 
      GetChar; 
   end; 
end; 
{--------------------------------------------------------------} 
 
Note that you must add two more global variables, Sign and Typ. 
 
With these two procedures in place, the compiler will process the 
class and type definitions and store away their findings.  We can 
now process the rest of the declaration. 
 
We  are by no means out of the woods yet, because there are still 



many complexities just in the definition of the  type,  before we 
even get to the actual data or function names.  Let's pretend for 
the moment that we have passed all those gates, and that the next 
thing in the  input stream is a name.  If the name is followed by 
a left paren, we have a function declaration.  If not, we have at 
least one data item,  and  possibly a list, each element of which 
can have an initializer. 
 
Insert the following version of TopDecl: 
 
 
{--------------------------------------------------------------} 
{ Process a Top-Level Declaration } 
 
procedure TopDecl; 
var Name: char; 
begin 
   Name := Getname; 
   if Look = '(' then 
      DoFunc(Name) 
   else 
      DoData(Name); 
end; 
{--------------------------------------------------------------} 
 
 
(Note that, since we have already read the name, we must  pass it 
along to the appropriate routine.) 
 
Finally, add the two procedures DoFunc and DoData: 
 
 
{--------------------------------------------------------------} 
{ Process a Function Definition } 
 
procedure DoFunc(n: char); 
begin 
   Match('('); 
   Match(')'); 
   Match('{'); 
   Match('}'); 
   if Typ = ' ' then Typ := 'i'; 
   Writeln(Class, Sign, Typ, ' function ', n); 
end; 
 
{--------------------------------------------------------------} 
{ Process a Data Declaration } 
 
procedure DoData(n: char); 
begin 
   if Typ = ' ' then Expected('Type declaration'); 
   Writeln(Class, Sign, Typ, ' data ', n); 
   while Look = ',' do begin 
      Match(','); 
      n := GetName; 
      WriteLn(Class, Sign, Typ, ' data ', n); 
   end; 



   Match(';'); 
end; 
{--------------------------------------------------------------} 
 
 
Since  we're  still  a long way from producing executable code, I 
decided to just have these two routines tell us what they found. 
 
OK, give this program a try.    For data declarations, it's OK to 
give a list separated by commas.  We  can't  process initializers 
as yet.  We also can't process argument lists for  the functions, 
but the "(){}" characters should be there. 
 
We're still a _VERY_ long way from having a C compiler,  but what 
we have is starting to process the right kinds of inputs,  and is 
recognizing both good  and  bad  inputs.    In  the  process, the 
natural structure of the compiler is starting to take form. 
 
Can we continue this until we have something that acts  more like 
a compiler. Of course we can.  Should we?  That's another matter. 
I don't know about you, but I'm beginning to get dizzy, and we've 
still  got  a  long  way  to  go  to  even  get  past   the  data 
declarations. 
 
At  this  point,  I think you can see how the  structure  of  the 
compiler evolves from the language  definition.    The structures 
we've seen for our  two  examples, Pascal and C, are as different 
as night and day.  Pascal was designed at least partly to be easy 
to parse, and that's  reflected  in the compiler.  In general, in 
Pascal there is more structure and we have a better idea  of what 
kinds of constructs to expect at any point.  In  C,  on the other 
hand,  the  program  is  essentially  a  list   of  declarations, 
terminated only by the end of file. 
 
We  could  pursue  both  of  these structures much  farther,  but 
remember that our purpose here is  not  to  build a Pascal or a C 
compiler, but rather to study compilers in general.  For those of 
you  who DO want to deal with Pascal or C, I hope I've given  you 
enough of a start so that you can  take  it  from  here (although 
you'll soon need some of the stuff we still haven't  covered yet, 
such as typing and procedure calls).    For the rest of you, stay 
with me through the next installment.  There, I'll be leading you 
through the development of a complete compiler for TINY, a subset 
of KISS. 
 
See you then. 
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INTRODUCTION 
 
In the last installment, I showed you the general  idea  for  the 
top-down development of  a  compiler.    I gave you the first few 
steps  of  the process for compilers for  Pascal  and  C,  but  I 
stopped  far  short  of  pushing  it through to completion.   The 
reason was simple: if we're going to produce  a  real, functional 
compiler  for  any  language, I'd rather  do  it  for  KISS,  the 
language that I've been defining in this tutorial series. 
 



In this installment, we're going to do just that, for a subset of 
KISS which I've chosen to call TINY. 
 
The process  will be essentially that outlined in Installment IX, 
except  for  one  notable  difference.   In that  installment,  I 
suggested  that  you  begin  with  a full BNF description of  the 
language.  That's fine for something like Pascal or C,  for which 
the language definition is  firm.   In the case of TINY, however, 
we don't yet have a full  description  ... we seem to be defining 
the language as we go.  That's OK.    In  fact,  it's preferable, 
since we can tailor the language  slightly  as we go, to keep the 
parsing easy. 
 
So in the development  that  follows,  we'll  actually be doing a 
top-down development of BOTH the  language and its compiler.  The 
BNF description will grow along with the compiler. 
 
In this process, there will be a number of decisions to  be made, 
each of which will influence the BNF and therefore the  nature of 
the language.   At  each  decision  point I'll try to remember to 
explain  the  decision  and the rationale behind my choice.  That 
way, if you happen to hold a different opinion and would prefer a 
different option, you can choose it instead.  You  now  have  the 
background  to  do  that.  I guess the important thing to note is 
that  nothing  we  do  here  is  cast  in  concrete.  When YOU'RE 
designing YOUR language, you should feel free to do it YOUR way. 
 
Many of you may be asking at this point: Why bother starting over 
from  scratch?  We had a working subset of KISS as the outcome of 
Installment  VII  (lexical  scanning).  Why not just extend it as 
needed?  The  answer  is  threefold.    First of all, I have been 
making  a  number  of changes to further simplify the program ... 
changes  like  encapsulating  the  code generation procedures, so 
that  we  can  convert to a different target machine more easily. 
Second, I want you to see how the development can indeed  be done 
from the top down as outlined in the last installment.   Finally, 
we both need the practice.  Each time I go through this exercise, 
I get a little better at it, and you will, also. 
 
 
GETTING STARTED 
 
Many  years  ago  there were languages called  Tiny  BASIC,  Tiny 
Pascal, and Tiny C, each of which was a subset of its parent full 
language.  Tiny BASIC,  for  example,  had  only single-character 
variable names and global variables.   It supported only a single 
data type.  Sound familiar?  At this point we have almost all the 
tools we need to build a compiler like that. 
 
Yet a language called Tiny-anything  still  carries  some baggage 
inherited from its parent language.   I've often wondered if this 
is a  good  idea.    Granted,  a  language based upon some parent 
language will have the  advantage  of  familiarity, but there may 
also  be  some  peculiar syntax carried over from the parent that 
may tend  to add unnecessary complexity to the compiler. (Nowhere 
is this more true than in Small C.) 
 



I've wondered just how small and simple a compiler could  be made 
and  still  be  useful, if it were designed from the outset to be 
both easy to use and to  parse.    Let's find out.  This language 
will just be called "TINY," period.  It's a subset of KISS, which 
I  also  haven't  fully  defined,  so  that  at  least  makes  us 
consistent (!).  I suppose you could call it TINY KISS.  But that 
opens  up a whole can of worms involving  cuter  and  cuter  (and 
perhaps more risque) names, so let's just stick with TINY. 
 
The main limitations  of  TINY  will  be because of the things we 
haven't yet covered, such as data types.  Like its cousins Tiny C 
and Tiny BASIC,  TINY  will  have  only one data type, the 16-bit 
integer.    The  first  version  we  develop  will also  have  no 
procedure  calls  and  will  use single-character variable names, 
although as you will see we can remove these restrictions without 
much effort. 
 
The language I have in mind will share some of the  good features 
of  Pascal,  C,  and Ada.  Taking a lesson from the comparison of 
the Pascal and  C  compilers in the previous installment, though, 
TINY will have a decided Pascal flavor.  Wherever  feasible,    a 
language structure will  be  bracketed by keywords or symbols, so 
that  the parser will know where it's  going  without  having  to 
guess. 
 
One other ground rule:  As we go, I'd like  to  keep the compiler 
producing real, executable code.  Even though it may not  DO much 
at the beginning, it will at least do it correctly. 
 
Finally,  I'll  use  a couple of Pascal  restrictions  that  make 
sense:  All data and procedures must be declared before  they are 
used.  That makes good sense,  even  though for now the only data 
type we'll use  is a word.  This rule in turn means that the only 
reasonable place to put the  executable code for the main program 
is at the end of the listing. 
 
The top-level definition will be similar to Pascal: 
 
 
     <program> ::= PROGRAM <top-level decl> <main> '.' 
 
 
Already, we've reached a decision point.  My first thought was to 
make the main block optional.   It  doesn't seem to make sense to 
write a "program" with no main program, but it does make sense if 
we're  allowing  for  multiple modules, linked together.    As  a 
matter of fact,  I intend to allow for this in KISS.  But then we 
begin  to open up a can of worms that I'd rather leave closed for 
now.  For example, the  term "PROGRAM" really becomes a misnomer. 
The MODULE of Modula-2 or the Unit of Turbo Pascal would  be more 
appropriate.  Second,  what  about  scope  rules?    We'd  need a 
convention for  dealing  with  name  visibility  across  modules. 
Better  for  now  to  just  keep  it  simple  and ignore the idea 
altogether. 
 
There's also a decision in choosing to require  the  main program 
to  be  last.    I  toyed  with  the idea of making its  position 



optional,  as  in  C.  The nature of SK*DOS, the OS I'm compiling 
for, make this very easy to do.   But  this  doesn't  really make 
much sense in view of the Pascal-like requirement  that  all data 
and procedures  be declared before they're referenced.  Since the 
main  program can only call procedures  that  have  already  been 
declared, the only position that makes sense is at the end,  a la 
Pascal. 
 
Given  the  BNF  above, let's write a parser that just recognizes 
the brackets: 
 
 
{--------------------------------------------------------------} 
{  Parse and Translate a Program } 
 
procedure Prog; 
begin 
   Match('p'); 
   Header; 
   Prolog; 
   Match('.'); 
   Epilog; 
end; 
{--------------------------------------------------------------} 
 
 
The procedure Header just emits  the startup code required by the 
assembler: 
                               
 
{--------------------------------------------------------------} 
{ Write Header Info } 
 
procedure Header; 
begin 
   WriteLn('WARMST', TAB, 'EQU $A01E'); 
end; 
{--------------------------------------------------------------} 
 
 
The procedures Prolog and  Epilog  emit  the code for identifying 
the main program, and for returning to the OS: 
 
 
{--------------------------------------------------------------} 
{ Write the Prolog } 
 
procedure Prolog; 
begin 
   PostLabel('MAIN'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Write the Epilog } 
 
procedure Epilog; 



begin 
   EmitLn('DC WARMST'); 
   EmitLn('END MAIN'); 
end; 
{--------------------------------------------------------------} 
 
 
The  main program just calls Prog, and then  looks  for  a  clean 
ending: 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
   Init; 
   Prog; 
   if Look <> CR then Abort('Unexpected data after ''.'''); 
end. 
{--------------------------------------------------------------} 
 
 
At this point, TINY  will  accept  only  one input "program," the 
null program: 
 
 
     PROGRAM .   (or 'p.' in our shorthand.) 
 
Note, though, that the  compiler  DOES  generate correct code for 
this program.  It will run, and do  what  you'd  expect  the null 
program to do, that is, nothing but return gracefully to the OS. 
 
As a matter of interest, one of my  favorite  compiler benchmarks 
is to compile, link,  and  execute  the  null program in whatever 
language   is   involved.     You  can  learn  a  lot  about  the 
implementation by measuring  the  overhead  in  time  required to 
compile what should be a trivial case.  It's also  interesting to 
measure the amount of code produced.  In many compilers, the code 
can be fairly large, because they always include  the  whole run- 
time  library whether they need it or not.    Early  versions  of 
Turbo Pascal produced a 12K object file for  this  case.    VAX C 
generates 50K! 
 
The  smallest  null  programs  I've  seen are those  produced  by 
Modula-2 compilers, and they run about 200-800 bytes. 
 
In the case of TINY, we HAVE no run-time library  as  yet, so the 
object code is indeed tiny:  two  bytes.    That's  got  to  be a 
record, and it's  likely  to  remain  one since it is the minimum 
size required by the OS. 
 
The  next step is to process the code for the main program.  I'll 
use the Pascal BEGIN-block: 
 
 
     <main> ::= BEGIN <block> END 
 



 
Here,  again,  we  have made a decision.  We could have chosen to 
require a "PROCEDURE MAIN" sort of declaration, similar to C.   I 
must  admit  that  this  is  not  a bad idea at all ...  I  don't 
particularly  like  the  Pascal  approach  since I tend  to  have 
trouble locating the main  program  in a Pascal listing.  But the 
alternative is a little awkward, too, since you have to deal with 
the  error condition where the user omits  the  main  program  or 
misspells its name.  Here I'm taking the easy way out. 
 
Another solution to the "where is the main program" problem might 
be to require a name for  the  program, and then bracket the main 
by 
 
 
     BEGIN <name> 
     END <name> 
 
 
similar to the convention of  Modula  2.    This  adds  a  bit of 
"syntactic sugar" to the language.  Things like this are  easy to 
add or change to your liking, if the language is your own design. 
 
To parse this definition of a main block,  change  procedure Prog 
to read: 
 
{--------------------------------------------------------------} 
{  Parse and Translate a Program } 
 
procedure Prog; 
begin 
   Match('p'); 
   Header; 
   Main; 
   Match('.'); 
end; 
{--------------------------------------------------------------} 
 
 
and add the new procedure: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Main Program } 
 
procedure Main; 
begin 
   Match('b'); 
   Prolog; 
   Match('e'); 
   Epilog; 
end; 
{--------------------------------------------------------------} 
 
 
Now, the only legal program is: 
 



 
     PROGRAM BEGIN END . (or 'pbe.') 
 
 
Aren't we making progress???  Well, as usual it gets better.  You 
might try some deliberate errors here, like omitting  the  'b' or 
the 'e', and see what happens.  As always,  the  compiler  should 
flag all illegal inputs. 
 
 
DECLARATIONS 
 
The obvious next step is to decide what we mean by a declaration. 
My  intent  here  is to have two kinds of declarations: variables 
and  procedures/functions.    At  the  top  level,   only  global 
declarations are allowed, just as in C. 
 
For now, there  can  only be variable declarations, identified by 
the keyword VAR (abbreviated 'v'): 
 
 
     <top-level decls> ::= ( <data declaration> )* 
 
     <data declaration> ::= VAR <var-list> 
 
 
Note that since there is only one variable type, there is no need 
to  declare the type.  Later on, for full KISS, we can easily add 
a type description. 
 
The procedure Prog becomes: 
 
 
{--------------------------------------------------------------} 
{  Parse and Translate a Program } 
 
procedure Prog; 
begin 
   Match('p'); 
   Header; 
   TopDecls; 
   Main; 
   Match('.'); 
end; 
{--------------------------------------------------------------} 
 
 
Now, add the two new procedures: 
 
 
{--------------------------------------------------------------} 
{ Process a Data Declaration } 
 
procedure Decl; 
begin 
   Match('v'); 
   GetChar; 



end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate Global Declarations } 
 
procedure TopDecls; 
begin 
   while Look <> 'b' do 
      case Look of 
        'v': Decl; 
      else Abort('Unrecognized Keyword ''' + Look + ''''); 
      end; 
end; 
{--------------------------------------------------------------} 
 
 
Note that at this point, Decl  is  just  a stub.  It generates no 
code, and it doesn't process a list ... every variable must occur 
in a separate VAR statement. 
 
OK,  now  we  can have any  number  of  data  declarations,  each 
starting with a 'v' for VAR,  before  the BEGIN-block.  Try a few 
cases and see what happens. 
 
 
DECLARATIONS AND SYMBOLS 
 
That looks pretty good, but  we're still only generating the null 
program  for  output.    A  real compiler would  issue  assembler 
directives to allocate storage for  the  variables.    It's about 
time we actually produced some code. 
 
With  a  little  extra  code,  that's  an  easy  thing to do from 
procedure Decl.  Modify it as follows: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Data Declaration } 
 
procedure Decl; 
var Name: char; 
begin 
   Match('v'); 
   Alloc(GetName); 
end; 
{--------------------------------------------------------------} 
 
 
The procedure Alloc just  issues  a  command  to the assembler to 
allocate storage: 
 
 
{--------------------------------------------------------------} 
{ Allocate Storage for a Variable } 
 
procedure Alloc(N: char); 



begin 
   WriteLn(N, ':', TAB, 'DC 0'); 
end; 
{--------------------------------------------------------------} 
 
 
Give  this  one  a  whirl.    Try  an  input  that declares  some 
variables, such as: 
 
     pvxvyvzbe. 
 
See how the storage is allocated?    Simple, huh?  Note also that 
the entry point, "MAIN," comes out in the right place. 
 
For the record, a "real" compiler would also have a  symbol table 
to record the variables being used.  Normally,  the  symbol table 
is necessary to record the type  of  each variable.  But since in 
this case  all  variables  have  the  same  type, we don't need a 
symbol  table  for  that reason.  As it turns out, we're going to 
find a symbol  necessary  even without different types, but let's 
postpone that need until it arises. 
 
Of course, we haven't really parsed the correct syntax for a data 
declaration, since it involves a variable list.  Our version only 
permits a single variable.  That's easy to fix, too. 
 
The BNF for <var-list> is 
 
 
     <var-list> ::= <ident> (, <ident>)* 
 
 
Adding this syntax to Decl gives this new version: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Data Declaration } 
 
procedure Decl; 
var Name: char; 
begin 
   Match('v'); 
   Alloc(GetName); 
   while Look = ',' do begin 
      GetChar; 
      Alloc(GetName); 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
OK, now compile this code and give it  a  try.    Try a number of 
lines of VAR declarations, try a list of several variables on one 
line, and try combinations of the two.  Does it work? 
 
 
INITIALIZERS 



 
As long as we're dealing with data declarations, one thing that's 
always  bothered  me  about  Pascal  is  that  it  doesn't  allow 
initializing  data items in the declaration.    That  feature  is 
admittedly sort of a frill, and it  may  be  out  of  place  in a 
language that purports to  be  a minimal language.  But it's also 
SO easy to add that it seems a shame not  to  do  so.    The  BNF 
becomes: 
 
 
     <var-list> ::= <var> ( <var> )* 
 
     <var> ::= <ident> [ = <integer> ] 
 
Change Alloc as follows: 
 
 
{--------------------------------------------------------------} 
{ Allocate Storage for a Variable } 
 
procedure Alloc(N: char); 
begin 
   Write(N, ':', TAB, 'DC '); 
   if Look = '=' then begin 
      Match('='); 
      WriteLn(GetNum); 
      end 
   else 
      WriteLn('0'); 
end; 
{--------------------------------------------------------------} 
 
 
There you are: an initializer with six added lines of Pascal. 
 
OK, try this  version  of  TINY  and verify that you can, indeed, 
give the variables initial values. 
 
By golly, this thing is starting to look  real!    Of  course, it 
still doesn't DO anything, but it looks good, doesn't it? 
 
Before leaving this section, I should point out  that  we've used 
two versions of function GetNum.  One, the earlier one, returns a 
character value, a single digit.  The other accepts a multi-digit 
integer and returns an integer value.  Either one will work here, 
since WriteLn will handle either type.  But there's no  reason to 
limit ourselves  to  single-digit  values  here,  so  the correct 
version to use is the one that returns an integer.  Here it is: 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNum: integer; 
var Val: integer; 
begin 
   Val := 0; 



   if not IsDigit(Look) then Expected('Integer'); 
   while IsDigit(Look) do begin 
      Val := 10 * Val + Ord(Look) - Ord('0'); 
      GetChar; 
   end; 
   GetNum := Val; 
end; 
{--------------------------------------------------------------} 
 
As a matter  of  fact,  strictly  speaking  we  should  allow for 
expressions in the data field of the initializer, or at  the very 
least  for  negative  values.  For  now,  let's  just  allow  for 
negative values by changing the code for Alloc as follows: 
 
 
{--------------------------------------------------------------} 
{ Allocate Storage for a Variable } 
 
procedure Alloc(N: char); 
begin 
   if InTable(N) then Abort('Duplicate Variable Name ' + N); 
   ST[N] := 'v'; 
   Write(N, ':', TAB, 'DC '); 
   if Look = '=' then begin 
      Match('='); 
      If Look = '-' then begin 
         Write(Look); 
         Match('-'); 
      end; 
      WriteLn(GetNum); 
      end 
   else 
      WriteLn('0'); 
end; 
{--------------------------------------------------------------} 
 
 
Now  you should be able to  initialize  variables  with  negative 
and/or multi-digit values. 
 
 
THE SYMBOL TABLE 
 
There's one problem  with  the  compiler  as it stands so far: it 
doesn't do anything to record a variable when we declare it.   So 
the compiler is perfectly content to allocate storage for several 
variables with the same name.  You can easily verify this with an 
input like 
 
 
     pvavavabe. 
 
 
Here we've declared the variable A three times.  As you  can see, 
the compiler will  cheerfully  accept  that,  and  generate three 
identical labels.  Not good. 
 



Later on,  when we start referencing variables, the compiler will 
also let us reference variables  that don't exist.  The assembler 
will  catch  both  of these error conditions, but it doesn't seem 
friendly at all to pass such errors along to the assembler.   The 
compiler should catch such things at the source language level. 
 
So even though we don't need a symbol table to record data types, 
we ought to install  one  just to check for these two conditions. 
Since at this  point  we are still restricted to single-character 
variable names, the symbol table can be trivial.  To  provide for 
it, first add the following  declaration at the beginning of your 
program: 
 
 
     var ST: array['A'..'Z'] of char; 
 
 
and insert the following function: 
 
 
{--------------------------------------------------------------} 
{ Look for Symbol in Table } 
 
function InTable(n: char): Boolean; 
begin 
   InTable := ST[n] <> ' '; 
end; 
{--------------------------------------------------------------} 
 
 
We  also  need  to initialize the  table  to  all  blanks.    The 
following lines in Init will do the job: 
 
 
var i: char; 
begin 
   for i := 'A' to 'Z' do 
      ST[i] := ' '; 
   ... 
 
 
Finally,  insert  the  following two lines at  the  beginning  of 
Alloc: 
 
 
   if InTable(N) then Abort('Duplicate Variable Name ' + N); 
   ST[N] := 'v'; 
 
 
That  should  do  it.  The  compiler  will  now  catch  duplicate 
declarations.  Later, we can  also  use  InTable  when generating 
references to the variables. 
 
 
EXECUTABLE STATEMENTS 
 
At this point, we can generate a null program that has  some data 



variables  declared  and  possibly initialized.  But  so  far  we 
haven't arranged to generate the first line of executable code. 
 
Believe  it or not, though, we almost  have  a  usable  language! 
What's missing is the executable code that must go into  the main 
program.  But that code is just assignment statements and control 
statements ... all stuff we have done before.   So  it  shouldn't 
take us long to provide for them, as well. 
 
The BNF definition given earlier  for the main program included a 
statement block, which we have so far ignored: 
 
 
     <main> ::= BEGIN <block> END 
 
 
For now,  we  can  just  consider  a  block  to  be  a  series of 
assignment statements: 
 
 
     <block> ::= (Assignment)* 
 
 
Let's start things off by adding  a  parser for the block.  We'll 
begin with a stub for the assignment statement: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment; 
begin 
   GetChar; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Block of Statements } 
 
procedure Block; 
begin 
   while Look <> 'e' do 
      Assignment; 
end; 
{--------------------------------------------------------------} 
 
 
Modify procedure Main to call Block as shown below: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Main Program } 
 
procedure Main; 
begin 
   Match('b'); 
   Prolog; 



   Block; 
   Match('e'); 
   Epilog; 
end; 
{--------------------------------------------------------------} 
 
 
This version still won't generate any code for  the   "assignment 
statements" ... all it does is to eat characters  until  it  sees 
the 'e' for 'END.'  But it sets the stage for what is to follow. 
 
The  next  step,  of  course,  is  to  flesh out the code for  an 
assignment statement.  This  is  something  we've done many times 
before,  so  I  won't belabor it.  This time, though, I'd like to 
deal with the code generation a little differently.  Up till now, 
we've always just inserted the Emits that generate output code in 
line with  the parsing routines.  A little unstructured, perhaps, 
but it seemed the most straightforward approach, and made it easy 
to see what kind of code would be emitted for each construct. 
 
However, I realize that most of you are using an  80x86 computer, 
so  the 68000 code generated is of little use to you.  Several of 
you have asked me if the CPU-dependent code couldn't be collected 
into one spot  where  it  would  be easier to retarget to another 
CPU.  The answer, of course, is yes. 
 
To  accomplish  this,  insert  the  following  "code  generation" 
routines: 
 
 
{---------------------------------------------------------------} 
{ Clear the Primary Register } 
 
procedure Clear; 
begin 
   EmitLn('CLR D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Negate the Primary Register } 
 
procedure Negate; 
begin 
   EmitLn('NEG D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Load a Constant Value to Primary Register } 
 
procedure LoadConst(n: integer); 
begin 
   Emit('MOVE #'); 
   WriteLn(n, ',D0'); 
end; 
 



 
{---------------------------------------------------------------} 
{ Load a Variable to Primary Register } 
 
procedure LoadVar(Name: char); 
begin 
   if not InTable(Name) then Undefined(Name); 
   EmitLn('MOVE ' + Name + '(PC),D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Push Primary onto Stack } 
 
procedure Push; 
begin 
   EmitLn('MOVE D0,-(SP)'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Add Top of Stack to Primary } 
 
procedure PopAdd; 
begin 
   EmitLn('ADD (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Subtract Primary from Top of Stack } 
 
procedure PopSub; 
begin 
   EmitLn('SUB (SP)+,D0'); 
   EmitLn('NEG D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Multiply Top of Stack by Primary } 
 
procedure PopMul; 
begin 
   EmitLn('MULS (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Divide Top of Stack by Primary } 
 
procedure PopDiv; 
begin 
   EmitLn('MOVE (SP)+,D7'); 
   EmitLn('EXT.L D7'); 
   EmitLn('DIVS D0,D7'); 
   EmitLn('MOVE D7,D0'); 



end; 
 
 
{---------------------------------------------------------------} 
{ Store Primary to Variable } 
 
procedure Store(Name: char); 
begin 
   if not InTable(Name) then Undefined(Name); 
   EmitLn('LEA ' + Name + '(PC),A0'); 
   EmitLn('MOVE D0,(A0)') 
end; 
{---------------------------------------------------------------} 
 
 
The  nice  part  of  this  approach,  of  course,  is that we can 
retarget  the compiler to a new CPU  simply  by  rewriting  these 
"code generator" procedures.  In  addition,  we  will  find later 
that we can improve the code quality by tweaking these routines a 
bit, without having to modify the compiler proper. 
 
Note that both LoadVar  and  Store check the symbol table to make 
sure that the variable is defined.  The  error  handler Undefined 
simply calls Abort: 
 
 
{--------------------------------------------------------------} 
{ Report an Undefined Identifier } 
 
procedure Undefined(n: string); 
begin 
   Abort('Undefined Identifier ' + n); 
end; 
{--------------------------------------------------------------} 
 
 
OK, we are now finally ready to begin processing executable code. 
We'll  do  that  by  replacing  the  stub  version  of  procedure 
Assignment. 
 
We've been down this  road  many times before, so this should all 
be familiar to you.    In fact, except for the changes associated 
with the code generation, we  could just copy the procedures from 
Part  VII.    Since we are making some changes, I won't just copy 
them, but we will go a little faster than usual. 
 
The BNF for the assignment statement is: 
 
     <assignment> ::= <ident> = <expression> 
 
     <expression> ::= <first term> ( <addop> <term> )* 
 
     <first term> ::= <first factor> <rest> 
 
     <term> ::= <factor> <rest> 
 
     <rest> ::= ( <mulop> <factor> )* 



 
     <first factor> ::= [ <addop> ] <factor> 
 
     <factor> ::= <var> | <number> | ( <expression> ) 
 
 
This version of the BNF is  also  a bit different than we've used 
before ... yet another "variation on the theme of an expression." 
This particular version  has  what  I  consider  to  be  the best 
treatment  of  the  unary minus.  As you'll see later, it lets us 
handle   negative  constant  values  efficiently.    It's   worth 
mentioning  here  that  we  have  often  seen  the advantages  of 
"tweaking"  the  BNF  as we go, to help make the language easy to 
parse.    What  you're looking at here is a bit different:  we've 
tweaked  the  BNF  to make the CODE  GENERATION  more  efficient! 
That's a first for this series. 
 
Anyhow, the following code implements the BNF: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Factor } 
 
procedure Expression; Forward; 
 
procedure Factor; 
begin 
   if Look = '(' then begin 
      Match('('); 
      Expression; 
      Match(')'); 
      end 
   else if IsAlpha(Look) then 
      LoadVar(GetName) 
   else 
      LoadConst(GetNum); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Negative Factor } 
 
procedure NegFactor; 
begin 
   Match('-'); 
   if IsDigit(Look) then 
      LoadConst(-GetNum) 
   else begin 
      Factor; 
      Negate; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Leading Factor } 
 



procedure FirstFactor; 
begin 
   case Look of 
     '+': begin 
             Match('+'); 
             Factor; 
          end; 
     '-': NegFactor; 
   else  Factor; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Multiply } 
 
procedure Multiply; 
begin 
   Match('*'); 
   Factor; 
   PopMul; 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Divide } 
 
procedure Divide; 
begin 
   Match('/'); 
   Factor; 
   PopDiv; 
end; 
 
 
{---------------------------------------------------------------} 
{ Common Code Used by Term and FirstTerm } 
 
procedure Term1; 
begin 
   while IsMulop(Look) do begin 
      Push; 
      case Look of 
       '*': Multiply; 
       '/': Divide; 
      end; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Term } 
 
procedure Term; 
begin 
   Factor; 
   Term1; 



end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Leading Term } 
 
procedure FirstTerm; 
begin 
   FirstFactor; 
   Term1; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an Add } 
 
procedure Add; 
begin 
   Match('+'); 
   Term; 
   PopAdd; 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Subtract } 
 
procedure Subtract; 
begin 
   Match('-'); 
   Term; 
   PopSub; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
procedure Expression; 
begin 
   FirstTerm; 
   while IsAddop(Look) do begin 
      Push; 
      case Look of 
       '+': Add; 
       '-': Subtract; 
      end; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment; 
var Name: char; 
begin 



   Name := GetName; 
   Match('='); 
   Expression; 
   Store(Name); 
end; 
{--------------------------------------------------------------} 
 
 
OK, if you've  got  all  this  code inserted, then compile it and 
check  it out.  You should  be  seeing  reasonable-looking  code, 
representing a complete program that will  assemble  and execute. 
We have a compiler! 
 
 
BOOLEANS 
 
The next step should also  be  familiar  to  you.    We  must add 
Boolean  expressions  and relational operations.    Again,  since 
we've already dealt with them more than once,  I  won't elaborate 
much on them, except  where  they  are  different from what we've 
done before.  Again, we won't just copy from other  files because 
I've changed a few things just a bit.  Most  of  the changes just 
involve encapsulating the machine-dependent parts as  we  did for 
the   arithmetic  operations.    I've  also  modified   procedure 
NotFactor  somewhat,  to  parallel  the structure of FirstFactor. 
Finally,  I  corrected  an  error  in  the  object code  for  the 
relational operators:  The Scc instruction I used  only  sets the 
low 8 bits of D0.  We want all 16 bits set for a logical true, so 
I've added an instruction to sign-extend the low byte. 
 
To begin, we're going to need some more recognizers: 
 
 
{--------------------------------------------------------------} 
{ Recognize a Boolean Orop } 
 
function IsOrop(c: char): boolean; 
begin 
   IsOrop := c in ['|', '~']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Relop } 
 
function IsRelop(c: char): boolean; 
begin 
   IsRelop := c in ['=', '#', '<', '>']; 
end; 
{--------------------------------------------------------------} 
 
 
Also, we're going to need some more code generation routines: 
 
 
{---------------------------------------------------------------} 
{ Complement the Primary Register } 



 
procedure NotIt; 
begin 
   EmitLn('NOT D0'); 
end; 
{---------------------------------------------------------------} 
. 
. 
. 
{---------------------------------------------------------------} 
{ AND Top of Stack with Primary } 
 
procedure PopAnd; 
begin 
   EmitLn('AND (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ OR Top of Stack with Primary } 
 
procedure PopOr; 
begin 
   EmitLn('OR (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ XOR Top of Stack with Primary } 
 
procedure PopXor; 
begin 
   EmitLn('EOR (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Compare Top of Stack with Primary } 
 
procedure PopCompare; 
begin 
   EmitLn('CMP (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was = } 
 
procedure SetEqual; 
begin 
   EmitLn('SEQ D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was != } 



 
procedure SetNEqual; 
begin 
   EmitLn('SNE D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was > } 
 
procedure SetGreater; 
begin 
   EmitLn('SLT D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was < } 
 
procedure SetLess; 
begin 
   EmitLn('SGT D0'); 
   EmitLn('EXT D0'); 
end; 
{---------------------------------------------------------------} 
 
All of this  gives us the tools we need.  The BNF for the Boolean 
expressions is: 
 
 
     <bool-expr> ::= <bool-term> ( <orop> <bool-term> )* 
 
     <bool-term> ::= <not-factor> ( <andop> <not-factor> )* 
 
     <not-factor> ::= [ '!' ] <relation> 
 
     <relation> ::= <expression> [ <relop> <expression> ] 
 
 
Sharp-eyed readers might  note  that this syntax does not include 
the non-terminal  "bool-factor" used in earlier versions.  It was 
needed then because I also allowed for the Boolean constants TRUE 
and FALSE.   But  remember  that  in TINY there is no distinction 
made between Boolean and arithmetic  types ... they can be freely 
intermixed.   So there is really no  need  for  these  predefined 
values ... we can just use -1 and 0, respectively. 
 
In C terminology, we could always use the defines: 
 
 
     #define TRUE -1 
     #define FALSE 0 
 
 
(That is, if TINY had a  preprocessor.)   Later on, when we allow 



for  declarations  of  constants,  these  two   values   will  be 
predefined by the language. 
 
The reason that I'm harping on this is that  I've  already  tried 
the alternative, which is to  include TRUE and FALSE as keywords. 
The problem with that approach is that it  then  requires lexical 
scanning for EVERY variable name  in every expression.  If you'll 
recall,  I pointed out in Installment VII  that  this  slows  the 
compiler  down considerably.  As long as  keywords  can't  be  in 
expressions, we need to do the scanning only at the  beginning of 
every  new  statement  ...  quite  an improvement.  So using  the 
syntax above not only simplifies the parsing, but  speeds  up the 
scanning as well. 
 
OK, given that we're  all  satisfied  with  the syntax above, the 
corresponding code is shown below: 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Equals" } 
 
procedure Equals; 
begin 
   Match('='); 
   Expression; 
   PopCompare; 
   SetEqual; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Not Equals" } 
 
procedure NotEquals; 
begin 
   Match('#'); 
   Expression; 
   PopCompare; 
   SetNEqual; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Less Than" } 
 
procedure Less; 
begin 
   Match('<'); 
   Expression; 
   PopCompare; 
   SetLess; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Greater Than" } 
 



procedure Greater; 
begin 
   Match('>'); 
   Expression; 
   PopCompare; 
   SetGreater; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Relation } 
 
 
procedure Relation; 
begin 
   Expression; 
   if IsRelop(Look) then begin 
      Push; 
      case Look of 
       '=': Equals; 
       '#': NotEquals; 
       '<': Less; 
       '>': Greater; 
      end; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Factor with Leading NOT } 
 
procedure NotFactor; 
begin 
   if Look = '!' then begin 
      Match('!'); 
      Relation; 
      NotIt; 
      end 
   else 
      Relation; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Term } 
 
procedure BoolTerm; 
begin 
   NotFactor; 
   while Look = '&' do begin 
      Push; 
      Match('&'); 
      NotFactor; 
      PopAnd; 
   end; 
end; 
 



 
{--------------------------------------------------------------} 
{ Recognize and Translate a Boolean OR } 
 
procedure BoolOr; 
begin 
   Match('|'); 
   BoolTerm; 
   PopOr; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an Exclusive Or } 
 
procedure BoolXor; 
begin 
   Match('~'); 
   BoolTerm; 
   PopXor; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Expression } 
 
procedure BoolExpression; 
begin 
   BoolTerm; 
   while IsOrOp(Look) do begin 
      Push; 
      case Look of 
       '|': BoolOr; 
       '~': BoolXor; 
      end; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
To tie it all together, don't forget to change the  references to 
Expression in  procedures Factor and Assignment so that they call 
BoolExpression instead. 
 
OK, if  you've  got  all  that typed in, compile it and give it a 
whirl.    First,  make  sure  you  can  still parse  an  ordinary 
arithmetic expression.  Then, try a Boolean one.    Finally, make 
sure  that you can assign the results of  relations.    Try,  for 
example: 
 
     pvx,y,zbx=z>ye. 
 
which stands for: 
 
     PROGRAM 
     VAR X,Y,Z 
     BEGIN 



     X = Z > Y 
     END. 
 
 
See how this assigns a Boolean value to X? 
 
CONTROL STRUCTURES 
 
We're almost home.   With  Boolean  expressions  in place, it's a 
simple  matter  to  add control structures.  For TINY, we'll only 
allow two kinds of them, the IF and the WHILE: 
 
 
     <if> ::= IF <bool-expression> <block> [ ELSE <block>] ENDIF 
 
     <while> ::= WHILE <bool-expression> <block> ENDWHILE 
 
Once  again,  let  me  spell  out the decisions implicit in  this 
syntax, which departs strongly from that of C or Pascal.  In both 
of those languages, the "body" of an IF or WHILE is regarded as a 
single  statement.  If you intend to use a block of more than one 
statement, you have to build a compound statement using BEGIN-END 
(in Pascal) or  '{}' (in C).  In TINY (and KISS) there is no such 
thing as a compound statement  ... single or multiple they're all 
just blocks to these languages. 
 
In KISS, all the control structures will have explicit and unique 
keywords  bracketing  the  statement block, so there  can  be  no 
confusion as to where things begin  and  end.  This is the modern 
approach, used in such respected languages as Ada  and  Modula 2, 
and it completely eliminates the problem of the "dangling else." 
 
Note  that I could have chosen to use the same keyword END to end 
all  the constructs, as is done in Pascal.  (The closing '}' in C 
serves the same purpose.)  But this has always led  to confusion, 
which is why Pascal programmers tend to write things like 
 
 
     end { loop } 
 
or   end { if } 
 
 
As I explained in  Part  V,  using  unique terminal keywords does 
increase  the  size  of the keyword list and therefore slows down 
the  scanning, but in this case it seems a small price to pay for 
the added insurance.   Better  to find the errors at compile time 
rather than run time. 
 
One last thought:  The two constructs above each  have  the  non- 
terminals 
 
 
      <bool-expression> and <block> 
 
 
juxtaposed with no separating keyword.  In Pascal we would expect 



the keywords THEN and DO in these locations. 
 
I have no problem with leaving out these keywords, and the parser 
has no trouble either, ON CONDITION that we make no errors in the 
bool-expression part.  On  the  other hand, if we were to include 
these extra keywords we would get yet one more level of insurance 
at very little  cost,  and  I  have no problem with that, either. 
Use your best judgment as to which way to go. 
 
OK, with that bit of explanation let's proceed.  As  usual, we're 
going to need some new  code generation routines.  These generate 
the code for conditional and unconditional branches: 
 
{---------------------------------------------------------------} 
{ Branch Unconditional  } 
 
procedure Branch(L: string); 
begin 
   EmitLn('BRA ' + L); 
end; 
 
 
{---------------------------------------------------------------} 
{ Branch False } 
 
procedure BranchFalse(L: string); 
begin 
   EmitLn('TST D0'); 
   EmitLn('BEQ ' + L); 
end; 
{--------------------------------------------------------------} 
 
 
Except for the encapsulation of  the code generation, the code to 
parse the control constructs is the same as you've seen before: 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate an IF Construct } 
 
procedure Block; Forward; 
 
 
procedure DoIf; 
var L1, L2: string; 
begin 
   Match('i'); 
   BoolExpression; 
   L1 := NewLabel; 
   L2 := L1; 
   BranchFalse(L1); 
   Block; 
   if Look = 'l' then begin 
      Match('l'); 
      L2 := NewLabel; 
      Branch(L2); 
      PostLabel(L1); 



      Block; 
   end; 
   PostLabel(L2); 
   Match('e'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a WHILE Statement } 
 
procedure DoWhile; 
var L1, L2: string; 
begin 
   Match('w'); 
   L1 := NewLabel; 
   L2 := NewLabel; 
   PostLabel(L1); 
   BoolExpression; 
   BranchFalse(L2); 
   Block; 
   Match('e'); 
   Branch(L1); 
   PostLabel(L2); 
end; 
{--------------------------------------------------------------} 
 
 
To tie everything  together,  we need only modify procedure Block 
to recognize the "keywords" for the  IF  and WHILE.  As usual, we 
expand the definition of a block like so: 
 
 
     <block> ::= ( <statement> )* 
 
 
where 
 
 
     <statement> ::= <if> | <while> | <assignment> 
 
 
The corresponding code is: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Block of Statements } 
 
procedure Block; 
begin 
   while not(Look in ['e', 'l']) do begin 
      case Look of 
       'i': DoIf; 
       'w': DoWhile; 
      else Assignment; 
      end; 
   end; 
end; 



{--------------------------------------------------------------} 
 
 
OK,  add the routines I've given, compile and  test  them.    You 
should be able to parse the single-character versions  of  any of 
the control constructs.  It's looking pretty good! 
 
As a matter  of  fact, except for the single-character limitation 
we've got a virtually complete version of TINY.  I call  it, with 
tongue planted firmly in cheek, TINY Version 0.1. 
 
 
LEXICAL SCANNING 
 
Of course, you know what's next:  We have to convert  the program 
so that  it can deal with multi-character keywords, newlines, and 
whitespace.   We have just gone through all  that  in  Part  VII. 
We'll use the distributed scanner  technique that I showed you in 
that  installment.    The  actual  implementation  is   a  little 
different because the way I'm handling newlines is different. 
 
To begin with, let's simply  allow for whitespace.  This involves 
only adding calls to SkipWhite at the end of the  three routines, 
GetName, GetNum, and Match.    A call to SkipWhite in Init primes 
the pump in case there are leading spaces. 
 
Next, we need to deal with  newlines.   This is really a two-step 
process,  since  the  treatment  of  the  newlines  with  single- 
character tokens is different from that for multi-character ones. 
We can eliminate some work by doing both  steps  at  once,  but I 
feel safer taking things one step at a time. 
 
Insert the new procedure: 
 
 
{--------------------------------------------------------------} 
{ Skip Over an End-of-Line } 
 
procedure NewLine; 
begin 
   while Look = CR do begin 
      GetChar; 
      if Look = LF then GetChar; 
      SkipWhite; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
Note that  we  have  seen  this  procedure  before in the form of 
Procedure Fin.  I've changed the name since this  new  one  seems 
more descriptive of the actual function.  I've  also  changed the 
code  to  allow  for multiple newlines and lines with nothing but 
white space. 
 
The next step is to insert calls to NewLine wherever we  decide a 
newline is permissible.  As I've pointed out before, this  can be 



very different in different languages.   In TINY, I've decided to 
allow them virtually anywhere.  This means that we need  calls to 
NewLine at the BEGINNING (not the end, as with SkipWhite)  of the 
procedures GetName, GetNum, and Match. 
 
For procedures that have while loops, such as TopDecl, we  need a 
call  to NewLine at the beginning of the  procedure  AND  at  the 
bottom  of  each  loop.  That way, we can be assured that NewLine 
has just been called at the beginning of each  pass  through  the 
loop. 
 
If you've got all this done, try the program out and  verify that 
it will indeed handle white space and newlines. 
 
If it does, then we're  ready to deal with multi-character tokens 
and keywords.   To begin, add the additional declarations (copied 
almost verbatim from Part VII): 
 
 
{--------------------------------------------------------------} 
{ Type Declarations } 
 
type Symbol = string[8]; 
 
     SymTab = array[1..1000] of Symbol; 
 
     TabPtr = ^SymTab; 
 
 
{--------------------------------------------------------------} 
{ Variable Declarations } 
 
var Look : char;             { Lookahead Character } 
    Token: char;             { Encoded Token       } 
    Value: string[16];       { Unencoded Token     } 
 
    ST: Array['A'..'Z'] of char; 
 
{--------------------------------------------------------------} 
{ Definition of Keywords and Token Types } 
 
const NKW =   9; 
      NKW1 = 10; 
 
const KWlist: array[1..NKW] of Symbol = 
              ('IF', 'ELSE', 'ENDIF', 'WHILE', 'ENDWHILE', 
               'VAR', 'BEGIN', 'END', 'PROGRAM'); 
 
const KWcode: string[NKW1] = 'xilewevbep'; 
{--------------------------------------------------------------} 
 
 
Next, add the three procedures, also from Part VII: 
 
 
{--------------------------------------------------------------} 
{ Table Lookup } 



 
function Lookup(T: TabPtr; s: string; n: integer): integer; 
var i: integer; 
    found: Boolean; 
begin 
   found := false; 
   i := n; 
   while (i > 0) and not found do 
      if s = T^[i] then 
         found := true 
      else 
         dec(i); 
   Lookup := i; 
end; 
{--------------------------------------------------------------} 
. 
. 
{--------------------------------------------------------------} 
{ Get an Identifier and Scan it for Keywords } 
 
procedure Scan; 
begin 
   GetName; 
   Token := KWcode[Lookup(Addr(KWlist), Value, NKW) + 1]; 
end; 
{--------------------------------------------------------------} 
. 
. 
{--------------------------------------------------------------} 
{ Match a Specific Input String } 
 
procedure MatchString(x: string); 
begin 
   if Value <> x then Expected('''' + x + ''''); 
end; 
{--------------------------------------------------------------} 
 
 
Now, we have to make a  fairly  large number of subtle changes to 
the remaining procedures.  First,  we  must  change  the function 
GetName to a procedure, again as we did in Part VII: 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
procedure GetName; 
begin 
   NewLine; 
   if not IsAlpha(Look) then Expected('Name'); 
   Value := ''; 
   while IsAlNum(Look) do begin 
      Value := Value + UpCase(Look); 
      GetChar; 
   end; 
   SkipWhite; 
end; 



{--------------------------------------------------------------} 
 
 
Note that this procedure leaves its result in  the  global string 
Value. 
 
Next, we have to change every reference to GetName to reflect its 
new form. These occur in Factor, Assignment, and Decl: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Factor } 
 
procedure BoolExpression; Forward; 
 
procedure Factor; 
begin 
   if Look = '(' then begin 
      Match('('); 
      BoolExpression; 
      Match(')'); 
      end 
   else if IsAlpha(Look) then begin 
      GetName; 
      LoadVar(Value[1]); 
      end 
   else 
      LoadConst(GetNum); 
end; 
{--------------------------------------------------------------} 
. 
. 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment; 
var Name: char; 
begin 
   Name := Value[1]; 
   Match('='); 
   BoolExpression; 
   Store(Name); 
end; 
{---------------------------------------------------------------} 
. 
. 
{--------------------------------------------------------------} 
{ Parse and Translate a Data Declaration } 
 
procedure Decl; 
begin 
   GetName; 
   Alloc(Value[1]); 
   while Look = ',' do begin 
      Match(','); 
      GetName; 
      Alloc(Value[1]); 



   end; 
end; 
{--------------------------------------------------------------} 
 
 
(Note that we're still  only  allowing  single-character variable 
names,  so we take the easy way out here and simply use the first 
character of the string.) 
 
Finally, we must make the changes to use Token instead of Look as 
the  test  character  and to call Scan at the appropriate places. 
Mostly, this  involves  deleting  calls  to  Match,  occasionally 
replacing calls to  Match  by calls to MatchString, and Replacing 
calls  to  NewLine  by  calls  to  Scan.    Here are the affected 
routines: 
 
{---------------------------------------------------------------} 
{ Recognize and Translate an IF Construct } 
 
procedure Block; Forward; 
 
 
procedure DoIf; 
var L1, L2: string; 
begin 
   BoolExpression; 
   L1 := NewLabel; 
   L2 := L1; 
   BranchFalse(L1); 
   Block; 
   if Token = 'l' then begin 
      L2 := NewLabel; 
      Branch(L2); 
      PostLabel(L1); 
      Block; 
   end; 
   PostLabel(L2); 
   MatchString('ENDIF'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a WHILE Statement } 
 
procedure DoWhile; 
var L1, L2: string; 
begin 
   L1 := NewLabel; 
   L2 := NewLabel; 
   PostLabel(L1); 
   BoolExpression; 
   BranchFalse(L2); 
   Block; 
   MatchString('ENDWHILE'); 
   Branch(L1); 
   PostLabel(L2); 
end; 



 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Block of Statements } 
 
procedure Block; 
begin 
   Scan; 
   while not(Token in ['e', 'l']) do begin 
      case Token of 
       'i': DoIf; 
       'w': DoWhile; 
      else Assignment; 
      end; 
      Scan; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate Global Declarations } 
 
procedure TopDecls; 
begin 
   Scan; 
   while Token <> 'b' do begin 
      case Token of 
        'v': Decl; 
      else Abort('Unrecognized Keyword ' + Value); 
      end; 
      Scan; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Main Program } 
 
procedure Main; 
begin 
   MatchString('BEGIN'); 
   Prolog; 
   Block; 
   MatchString('END'); 
   Epilog; 
end; 
 
{--------------------------------------------------------------} 
{  Parse and Translate a Program } 
 
procedure Prog; 
begin 
   MatchString('PROGRAM'); 
   Header; 
   TopDecls; 
   Main; 
   Match('.'); 



end; 
 
 
{--------------------------------------------------------------} 
{ Initialize } 
 
procedure Init; 
var i: char; 
begin 
   for i := 'A' to 'Z' do 
      ST[i] := ' '; 
   GetChar; 
   Scan; 
end; 
{--------------------------------------------------------------} 
 
 
That should do  it.    If  all  the changes got in correctly, you 
should now be parsing programs that look like programs.   (If you 
didn't  make  it  through all the  changes,  don't  despair.    A 
complete listing of the final form is given later.) 
 
Did it work?  If so, then we're just about home.  In fact, with a 
few minor  exceptions we've already got a compiler that's usable. 
There are still a few areas that need improvement. 
 
 
MULTI-CHARACTER VARIABLE NAMES 
 
One of those is  the  restriction  that  we still have, requiring 
single-character variable names.    Now that we can handle multi- 
character keywords, this one  begins  to  look  very much like an 
arbitrary  and  unnecessary  limitation.    And  indeed   it  is. 
Basically, its only virtue is  that it permits a trivially simple 
implementation  of  the   symbol   table.    But  that's  just  a 
convenience to the compiler writers, and needs to be eliminated. 
 
We've done this step before.  This time, as usual, I'm doing it a 
little differently.  I think  the approach used here keeps things 
just about as simple as possible. 
 
The natural  way  to  implement  a  symbol  table in Pascal is by 
declaring a record type, and making the symbol table an  array of 
such records.  Here, though, we don't really need  a  type  field 
yet  (there is only one kind of entry allowed so far), so we only 
need an array of symbols.  This has the advantage that we can use 
the existing procedure Lookup to  search the symbol table as well 
as the  keyword  list.    As it turns out, even when we need more 
fields we can still use the same approach, simply by  storing the 
other fields in separate arrays. 
 
OK, here are the changes that  need  to  be made.  First, add the 
new typed constant: 
 
 
      NEntry: integer = 0; 
 



 
Then change the definition of the symbol table as follows: 
 
 
const MaxEntry = 100; 
 
var ST   : array[1..MaxEntry] of Symbol; 
 
 
(Note that ST is _NOT_ declared as a SymTab.  That declaration is 
a phony one to get Lookup to work.  A SymTab  would  take  up too 
much RAM space, and so one is never actually allocated.) 
 
Next, we need to replace InTable: 
 
 
{--------------------------------------------------------------} 
{ Look for Symbol in Table } 
 
function InTable(n: Symbol): Boolean; 
begin 
   InTable := Lookup(@ST, n, MaxEntry) <> 0; 
end; 
{--------------------------------------------------------------} 
 
 
We also need a new procedure, AddEntry, that adds a new  entry to 
the table: 
 
 
{--------------------------------------------------------------} 
{ Add a New Entry to Symbol Table } 
 
procedure AddEntry(N: Symbol; T: char); 
begin 
   if InTable(N) then Abort('Duplicate Identifier ' + N); 
   if NEntry = MaxEntry then Abort('Symbol Table Full'); 
   Inc(NEntry); 
   ST[NEntry] := N; 
   SType[NEntry] := T; 
end; 
{--------------------------------------------------------------} 
 
 
This procedure is called by Alloc: 
 
 
{--------------------------------------------------------------} 
{ Allocate Storage for a Variable } 
 
procedure Alloc(N: Symbol); 
begin 
   if InTable(N) then Abort('Duplicate Variable Name ' + N); 
   AddEntry(N, 'v'); 
. 
. 
. 



{--------------------------------------------------------------} 
 
 
Finally, we must change all the routines that currently treat the 
variable name as a single character.  These include   LoadVar and 
Store (just change the  type  from  char  to string), and Factor, 
Assignment, and Decl (just change Value[1] to Value). 
 
One  last  thing:  change  procedure  Init to clear the array  as 
shown: 
 
 
{--------------------------------------------------------------} 
{ Initialize } 
 
procedure Init; 
var i: integer; 
begin 
   for i := 1 to MaxEntry do begin 
      ST[i] := ''; 
      SType[i] := ' '; 
   end; 
   GetChar; 
   Scan; 
end; 
{--------------------------------------------------------------} 
 
 
That should do it.  Try it out and verify  that  you can, indeed, 
use multi-character variable names. 
 
 
MORE RELOPS 
 
We still have one remaining single-character restriction: the one 
on relops.  Some of the relops are indeed single  characters, but 
others  require two.  These are '<=' and '>='.  I also prefer the 
Pascal '<>' for "not equals,"  instead of '#'. 
 
If you'll recall, in Part VII I pointed out that the conventional 
way  to  deal  with  relops  is  to  include them in the list  of 
keywords, and let the  lexical  scanner  find  them.  But, again, 
this requires scanning throughout the expression parsing process, 
whereas so far we've been able to limit the use of the scanner to 
the beginning of a statement. 
 
I mentioned then that we can still get away with this,  since the 
multi-character relops are so few  and so limited in their usage. 
It's easy to just treat them as special cases and handle  them in 
an ad hoc manner. 
 
The changes required affect only the code generation routines and 
procedures Relation and friends.   First, we're going to need two 
more code generation routines: 
 
 
{---------------------------------------------------------------} 



{ Set D0 If Compare was <= } 
 
procedure SetLessOrEqual; 
begin 
   EmitLn('SGE D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was >= } 
 
procedure SetGreaterOrEqual; 
begin 
   EmitLn('SLE D0'); 
   EmitLn('EXT D0'); 
end; 
{---------------------------------------------------------------} 
 
 
Then, modify the relation parsing routines as shown below: 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Less Than or Equal" } 
 
procedure LessOrEqual; 
begin 
   Match('='); 
   Expression; 
   PopCompare; 
   SetLessOrEqual; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Not Equals" } 
 
procedure NotEqual; 
begin 
   Match('>'); 
   Expression; 
   PopCompare; 
   SetNEqual; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Less Than" } 
 
procedure Less; 
begin 
   Match('<'); 
   case Look of 
     '=': LessOrEqual; 
     '>': NotEqual; 
   else begin 



           Expression; 
           PopCompare; 
           SetLess; 
        end; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Greater Than" } 
 
procedure Greater; 
begin 
   Match('>'); 
   if Look = '=' then begin 
      Match('='); 
      Expression; 
      PopCompare; 
      SetGreaterOrEqual; 
      end 
   else begin 
      Expression; 
      PopCompare; 
      SetGreater; 
   end; 
end; 
{---------------------------------------------------------------} 
 
 
That's all it takes.  Now  you  can  process all the relops.  Try 
it. 
 
 
INPUT/OUTPUT 
 
We  now  have  a complete, working language, except for one minor 
embarassment: we have no way to get data in or out.  We need some 
I/O. 
 
Now, the convention these days, established in C and continued in 
Ada and Modula 2, is to leave I/O statements out of  the language 
itself,  and  just  include them in the subroutine library.  That 
would  be  fine, except that so far  we  have  no  provision  for 
subroutines.  Anyhow, with this approach you run into the problem 
of variable-length argument lists.  In Pascal, the I/O statements 
are built into the language because they are the  only  ones  for 
which  the  argument  list can have a variable number of entries. 
In C, we settle for kludges like scanf and printf, and  must pass 
the argument count to the called procedure.  In Ada and  Modula 2 
we must use the  awkward  (and SLOW!) approach of a separate call 
for each argument. 
 
So I think I prefer the  Pascal  approach of building the I/O in, 
even though we don't need to. 
 
As  usual,  for  this we need some more code generation routines. 
These turn out  to be the easiest of all, because all we do is to 



call library procedures to do the work: 
 
 
{---------------------------------------------------------------} 
{ Read Variable to Primary Register } 
 
procedure ReadVar; 
begin 
   EmitLn('BSR READ'); 
   Store(Value); 
end; 
 
 
{---------------------------------------------------------------} 
{ Write Variable from Primary Register } 
 
procedure WriteVar; 
begin 
   EmitLn('BSR WRITE'); 
end; 
{--------------------------------------------------------------} 
 
 
The idea is that READ loads the value from input  to  the D0, and 
WRITE outputs it from there. 
 
These two procedures represent  our  first  encounter with a need 
for library procedures ... the components of a  Run  Time Library 
(RTL).    Of  course, someone (namely  us)  has  to  write  these 
routines, but they're not  part  of the compiler itself.  I won't 
even bother  showing the routines here, since these are obviously 
very much OS-dependent.   I  _WILL_  simply  say that for SK*DOS, 
they  are  particularly  simple ... almost trivial.  One reason I 
won't show them here is that  you  can add all kinds of fanciness 
to the things, for  example  by prompting in READ for the inputs, 
and by giving the user a chance to reenter a bad input. 
 
But that is really separate from compiler design, so for now I'll 
just assume that a library call TINYLIB.LIB exists.  Since we now 
need  it  loaded,  we need to add a statement to  include  it  in 
procedure Header: 
 
 
{--------------------------------------------------------------} 
{ Write Header Info } 
 
procedure Header; 
begin 
 
   WriteLn('WARMST', TAB, 'EQU $A01E'); 
   EmitLn('LIB TINYLIB'); 
end; 
{--------------------------------------------------------------} 
 
That takes care of that part.  Now, we also need to recognize the 
read  and  write  commands.  We can do this by  adding  two  more 
keywords to our list: 



 
 
{--------------------------------------------------------------} 
{ Definition of Keywords and Token Types } 
 
const NKW =   11; 
      NKW1 = 12; 
 
const KWlist: array[1..NKW] of Symbol = 
              ('IF', 'ELSE', 'ENDIF', 'WHILE', 'ENDWHILE', 
               'READ',    'WRITE',    'VAR',    'BEGIN',   'END', 
'PROGRAM'); 
 
const KWcode: string[NKW1] = 'xileweRWvbep'; 
{--------------------------------------------------------------} 
 
 
(Note how I'm using upper case codes here to avoid  conflict with 
the 'w' of WHILE.) 
 
Next, we need procedures for processing the  read/write statement 
and its argument list: 
 
 
{--------------------------------------------------------------} 
{ Process a Read Statement } 
procedure DoRead; 
begin 
   Match('('); 
   GetName; 
   ReadVar; 
   while Look = ',' do begin 
      Match(','); 
      GetName; 
      ReadVar; 
   end; 
   Match(')'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Process a Write Statement } 
 
procedure DoWrite; 
begin 
   Match('('); 
   Expression; 
   WriteVar; 
   while Look = ',' do begin 
      Match(','); 
      Expression; 
      WriteVar; 
   end; 
   Match(')'); 
end; 
{--------------------------------------------------------------} 
 



 
Finally,  we  must  expand  procedure  Block  to  handle the  new 
statement types: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Block of Statements } 
 
procedure Block; 
begin 
   Scan; 
   while not(Token in ['e', 'l']) do begin 
      case Token of 
       'i': DoIf; 
       'w': DoWhile; 
       'R': DoRead; 
       'W': DoWrite; 
      else Assignment; 
      end; 
      Scan; 
   end; 
end; 
{--------------------------------------------------------------} 
 
That's all there is to it.  _NOW_ we have a language! 
 
 
CONCLUSION 
 
At this point we have TINY completely defined.  It's not much ... 
actually a toy  compiler.    TINY  has  only one data type and no 
subroutines  ... but it's a complete,  usable  language.    While 
you're not likely to be able to write another compiler in  it, or 
do anything else very seriously, you could write programs to read 
some input, perform calculations,  and  output  the results.  Not 
too bad for a toy. 
 
Most importantly, we have a firm base upon which to build further 
extensions.  I know you'll be glad to hear this: this is the last 
time  I'll  start  over in building a parser ... from  now  on  I 
intend to just add features to  TINY  until it becomes KISS.  Oh, 
there'll be other times we will  need  to try things out with new 
copies  of  the  Cradle, but once we've found out how to do those 
things they'll be incorporated into TINY. 
 
What  will  those  features  be?    Well,  for starters  we  need 
subroutines and functions.    Then  we  need to be able to handle 
different types, including arrays, strings, and other structures. 
Then we need to deal with the idea of pointers.  All this will be 
upcoming in future installments. 
 
See you then. 
 
For references purposes, the complete listing of TINY Version 1.0 
is shown below: 
 
 



{--------------------------------------------------------------} 
program Tiny10; 
 
{--------------------------------------------------------------} 
{ Constant Declarations } 
 
const TAB = ^I; 
      CR  = ^M; 
      LF  = ^J; 
 
      LCount: integer = 0; 
      NEntry: integer = 0; 
 
 
{--------------------------------------------------------------} 
{ Type Declarations } 
 
type Symbol = string[8]; 
 
     SymTab = array[1..1000] of Symbol; 
     TabPtr = ^SymTab; 
 
 
{--------------------------------------------------------------} 
{ Variable Declarations } 
 
var Look : char;             { Lookahead Character } 
    Token: char;             { Encoded Token       } 
    Value: string[16];       { Unencoded Token     } 
 
 
const MaxEntry = 100; 
 
var ST   : array[1..MaxEntry] of Symbol; 
    SType: array[1..MaxEntry] of char; 
 
 
{--------------------------------------------------------------} 
{ Definition of Keywords and Token Types } 
 
const NKW =   11; 
      NKW1 = 12; 
 
const KWlist: array[1..NKW] of Symbol = 
              ('IF', 'ELSE', 'ENDIF', 'WHILE', 'ENDWHILE', 
               'READ',    'WRITE',    'VAR',    'BEGIN',   'END', 
'PROGRAM'); 
 
const KWcode: string[NKW1] = 'xileweRWvbep'; 
 
 
{--------------------------------------------------------------} 
{ Read New Character From Input Stream } 
 
procedure GetChar; 
begin 
   Read(Look); 



end; 
 
{--------------------------------------------------------------} 
{ Report an Error } 
 
procedure Error(s: string); 
begin 
   WriteLn; 
   WriteLn(^G, 'Error: ', s, '.'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Report Error and Halt } 
 
procedure Abort(s: string); 
begin 
   Error(s); 
   Halt; 
end; 
 
 
{--------------------------------------------------------------} 
{ Report What Was Expected } 
 
procedure Expected(s: string); 
begin 
   Abort(s + ' Expected'); 
end; 
 
{--------------------------------------------------------------} 
{ Report an Undefined Identifier } 
 
procedure Undefined(n: string); 
begin 
   Abort('Undefined Identifier ' + n); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an Alpha Character } 
 
function IsAlpha(c: char): boolean; 
begin 
   IsAlpha := UpCase(c) in ['A'..'Z']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Decimal Digit } 
 
function IsDigit(c: char): boolean; 
begin 
   IsDigit := c in ['0'..'9']; 
end; 
 
 



{--------------------------------------------------------------} 
{ Recognize an AlphaNumeric Character } 
 
function IsAlNum(c: char): boolean; 
begin 
   IsAlNum := IsAlpha(c) or IsDigit(c); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an Addop } 
 
function IsAddop(c: char): boolean; 
begin 
   IsAddop := c in ['+', '-']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Mulop } 
 
function IsMulop(c: char): boolean; 
begin 
   IsMulop := c in ['*', '/']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Boolean Orop } 
 
function IsOrop(c: char): boolean; 
begin 
   IsOrop := c in ['|', '~']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Relop } 
 
function IsRelop(c: char): boolean; 
begin 
   IsRelop := c in ['=', '#', '<', '>']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize White Space } 
 
function IsWhite(c: char): boolean; 
begin 
   IsWhite := c in [' ', TAB]; 
end; 
 
 
{--------------------------------------------------------------} 
{ Skip Over Leading White Space } 
 



procedure SkipWhite; 
begin 
   while IsWhite(Look) do 
      GetChar; 
end; 
 
 
{--------------------------------------------------------------} 
{ Skip Over an End-of-Line } 
 
procedure NewLine; 
begin 
   while Look = CR do begin 
      GetChar; 
      if Look = LF then GetChar; 
      SkipWhite; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Match a Specific Input Character } 
 
procedure Match(x: char); 
begin 
   NewLine; 
   if Look = x then GetChar 
   else Expected('''' + x + ''''); 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Table Lookup } 
 
function Lookup(T: TabPtr; s: string; n: integer): integer; 
var i: integer; 
    found: Boolean; 
begin 
   found := false; 
   i := n; 
   while (i > 0) and not found do 
      if s = T^[i] then 
         found := true 
      else 
         dec(i); 
   Lookup := i; 
end; 
 
 
{--------------------------------------------------------------} 
{ Locate a Symbol in Table } 
{ Returns the index of the entry.  Zero if not present. } 
 
function Locate(N: Symbol): integer; 
begin 
   Locate := Lookup(@ST, n, MaxEntry); 



end; 
 
 
{--------------------------------------------------------------} 
{ Look for Symbol in Table } 
 
function InTable(n: Symbol): Boolean; 
begin 
   InTable := Lookup(@ST, n, MaxEntry) <> 0; 
end; 
 
 
{--------------------------------------------------------------} 
{ Add a New Entry to Symbol Table } 
 
procedure AddEntry(N: Symbol; T: char); 
begin 
   if InTable(N) then Abort('Duplicate Identifier ' + N); 
   if NEntry = MaxEntry then Abort('Symbol Table Full'); 
   Inc(NEntry); 
   ST[NEntry] := N; 
   SType[NEntry] := T; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
procedure GetName; 
begin 
   NewLine; 
   if not IsAlpha(Look) then Expected('Name'); 
   Value := ''; 
   while IsAlNum(Look) do begin 
      Value := Value + UpCase(Look); 
      GetChar; 
   end; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNum: integer; 
var Val: integer; 
begin 
   NewLine; 
   if not IsDigit(Look) then Expected('Integer'); 
   Val := 0; 
   while IsDigit(Look) do begin 
      Val := 10 * Val + Ord(Look) - Ord('0'); 
      GetChar; 
   end; 
   GetNum := Val; 
   SkipWhite; 
end; 



 
 
{--------------------------------------------------------------} 
{ Get an Identifier and Scan it for Keywords } 
 
procedure Scan; 
begin 
   GetName; 
   Token := KWcode[Lookup(Addr(KWlist), Value, NKW) + 1]; 
end; 
 
 
{--------------------------------------------------------------} 
{ Match a Specific Input String } 
 
procedure MatchString(x: string); 
begin 
   if Value <> x then Expected('''' + x + ''''); 
end; 
 
 
{--------------------------------------------------------------} 
{ Output a String with Tab } 
 
procedure Emit(s: string); 
begin 
   Write(TAB, s); 
end; 
 
 
{--------------------------------------------------------------} 
{ Output a String with Tab and CRLF } 
 
procedure EmitLn(s: string); 
begin 
   Emit(s); 
   WriteLn; 
end; 
 
 
{--------------------------------------------------------------} 
{ Generate a Unique Label } 
 
function NewLabel: string; 
var S: string; 
begin 
   Str(LCount, S); 
   NewLabel := 'L' + S; 
   Inc(LCount); 
end; 
 
 
{--------------------------------------------------------------} 
{ Post a Label To Output } 
 
procedure PostLabel(L: string); 
begin 



   WriteLn(L, ':'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Clear the Primary Register } 
 
procedure Clear; 
begin 
   EmitLn('CLR D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Negate the Primary Register } 
 
procedure Negate; 
begin 
   EmitLn('NEG D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Complement the Primary Register } 
 
procedure NotIt; 
begin 
   EmitLn('NOT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Load a Constant Value to Primary Register } 
 
procedure LoadConst(n: integer); 
begin 
   Emit('MOVE #'); 
   WriteLn(n, ',D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Load a Variable to Primary Register } 
 
procedure LoadVar(Name: string); 
begin 
   if not InTable(Name) then Undefined(Name); 
   EmitLn('MOVE ' + Name + '(PC),D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Push Primary onto Stack } 
 
procedure Push; 
begin 
   EmitLn('MOVE D0,-(SP)'); 



end; 
 
 
{---------------------------------------------------------------} 
{ Add Top of Stack to Primary } 
 
procedure PopAdd; 
begin 
   EmitLn('ADD (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Subtract Primary from Top of Stack } 
 
procedure PopSub; 
begin 
   EmitLn('SUB (SP)+,D0'); 
   EmitLn('NEG D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Multiply Top of Stack by Primary } 
 
procedure PopMul; 
begin 
   EmitLn('MULS (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Divide Top of Stack by Primary } 
 
procedure PopDiv; 
begin 
   EmitLn('MOVE (SP)+,D7'); 
   EmitLn('EXT.L D7'); 
   EmitLn('DIVS D0,D7'); 
   EmitLn('MOVE D7,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ AND Top of Stack with Primary } 
 
procedure PopAnd; 
begin 
   EmitLn('AND (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ OR Top of Stack with Primary } 
 
procedure PopOr; 
begin 



   EmitLn('OR (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ XOR Top of Stack with Primary } 
 
procedure PopXor; 
begin 
   EmitLn('EOR (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Compare Top of Stack with Primary } 
 
procedure PopCompare; 
begin 
   EmitLn('CMP (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was = } 
 
procedure SetEqual; 
begin 
   EmitLn('SEQ D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was != } 
 
procedure SetNEqual; 
begin 
   EmitLn('SNE D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was > } 
 
procedure SetGreater; 
begin 
   EmitLn('SLT D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was < } 
 
procedure SetLess; 
begin 



   EmitLn('SGT D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was <= } 
 
procedure SetLessOrEqual; 
begin 
   EmitLn('SGE D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was >= } 
 
procedure SetGreaterOrEqual; 
begin 
   EmitLn('SLE D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Store Primary to Variable } 
 
procedure Store(Name: string); 
begin 
   if not InTable(Name) then Undefined(Name); 
   EmitLn('LEA ' + Name + '(PC),A0'); 
   EmitLn('MOVE D0,(A0)') 
end; 
 
 
{---------------------------------------------------------------} 
{ Branch Unconditional  } 
 
procedure Branch(L: string); 
begin 
   EmitLn('BRA ' + L); 
end; 
 
 
{---------------------------------------------------------------} 
{ Branch False } 
 
procedure BranchFalse(L: string); 
begin 
   EmitLn('TST D0'); 
   EmitLn('BEQ ' + L); 
end; 
 
 
{---------------------------------------------------------------} 
{ Read Variable to Primary Register } 



 
procedure ReadVar; 
begin 
   EmitLn('BSR READ'); 
   Store(Value[1]); 
end; 
 
 
{ Write Variable from Primary Register } 
 
procedure WriteVar; 
begin 
   EmitLn('BSR WRITE'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Write Header Info } 
 
procedure Header; 
begin 
   WriteLn('WARMST', TAB, 'EQU $A01E'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Write the Prolog } 
 
procedure Prolog; 
begin 
   PostLabel('MAIN'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Write the Epilog } 
 
procedure Epilog; 
begin 
   EmitLn('DC WARMST'); 
   EmitLn('END MAIN'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Factor } 
 
procedure BoolExpression; Forward; 
 
procedure Factor; 
begin 
   if Look = '(' then begin 
      Match('('); 
      BoolExpression; 
      Match(')'); 
      end 
   else if IsAlpha(Look) then begin 



      GetName; 
      LoadVar(Value); 
      end 
   else 
      LoadConst(GetNum); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Negative Factor } 
 
procedure NegFactor; 
begin 
   Match('-'); 
   if IsDigit(Look) then 
      LoadConst(-GetNum) 
   else begin 
      Factor; 
      Negate; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Leading Factor } 
 
procedure FirstFactor; 
begin 
   case Look of 
     '+': begin 
             Match('+'); 
             Factor; 
          end; 
     '-': NegFactor; 
   else  Factor; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Multiply } 
 
procedure Multiply; 
begin 
   Match('*'); 
   Factor; 
   PopMul; 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Divide } 
 
procedure Divide; 
begin 
   Match('/'); 
   Factor; 



   PopDiv; 
end; 
 
 
{---------------------------------------------------------------} 
{ Common Code Used by Term and FirstTerm } 
 
procedure Term1; 
begin 
   while IsMulop(Look) do begin 
      Push; 
      case Look of 
       '*': Multiply; 
       '/': Divide; 
      end; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Term } 
 
procedure Term; 
begin 
   Factor; 
   Term1; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Leading Term } 
 
procedure FirstTerm; 
begin 
   FirstFactor; 
   Term1; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an Add } 
 
procedure Add; 
begin 
   Match('+'); 
   Term; 
   PopAdd; 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Subtract } 
 
procedure Subtract; 
begin 
   Match('-'); 
   Term; 



   PopSub; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
procedure Expression; 
begin 
   FirstTerm; 
   while IsAddop(Look) do begin 
      Push; 
      case Look of 
       '+': Add; 
       '-': Subtract; 
      end; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Equals" } 
 
procedure Equal; 
begin 
   Match('='); 
   Expression; 
   PopCompare; 
   SetEqual; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Less Than or Equal" } 
 
procedure LessOrEqual; 
begin 
   Match('='); 
   Expression; 
   PopCompare; 
   SetLessOrEqual; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Not Equals" } 
 
procedure NotEqual; 
begin 
   Match('>'); 
   Expression; 
   PopCompare; 
   SetNEqual; 
end; 
 
 
{---------------------------------------------------------------} 



{ Recognize and Translate a Relational "Less Than" } 
 
procedure Less; 
begin 
   Match('<'); 
   case Look of 
     '=': LessOrEqual; 
     '>': NotEqual; 
   else begin 
           Expression; 
           PopCompare; 
           SetLess; 
        end; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Greater Than" } 
 
procedure Greater; 
begin 
   Match('>'); 
   if Look = '=' then begin 
      Match('='); 
      Expression; 
      PopCompare; 
      SetGreaterOrEqual; 
      end 
   else begin 
      Expression; 
      PopCompare; 
      SetGreater; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Relation } 
 
 
procedure Relation; 
begin 
   Expression; 
   if IsRelop(Look) then begin 
      Push; 
      case Look of 
       '=': Equal; 
       '<': Less; 
       '>': Greater; 
      end; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Factor with Leading NOT } 



 
procedure NotFactor; 
begin 
   if Look = '!' then begin 
      Match('!'); 
      Relation; 
      NotIt; 
      end 
   else 
      Relation; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Term } 
 
procedure BoolTerm; 
begin 
   NotFactor; 
   while Look = '&' do begin 
      Push; 
      Match('&'); 
      NotFactor; 
      PopAnd; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Boolean OR } 
 
procedure BoolOr; 
begin 
   Match('|'); 
   BoolTerm; 
   PopOr; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an Exclusive Or } 
 
procedure BoolXor; 
begin 
   Match('~'); 
   BoolTerm; 
   PopXor; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Expression } 
 
procedure BoolExpression; 
begin 
   BoolTerm; 
   while IsOrOp(Look) do begin 



      Push; 
      case Look of 
       '|': BoolOr; 
       '~': BoolXor; 
      end; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment; 
var Name: string; 
begin 
   Name := Value; 
   Match('='); 
   BoolExpression; 
   Store(Name); 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate an IF Construct } 
 
procedure Block; Forward; 
 
 
procedure DoIf; 
var L1, L2: string; 
begin 
   BoolExpression; 
   L1 := NewLabel; 
   L2 := L1; 
   BranchFalse(L1); 
   Block; 
   if Token = 'l' then begin 
      L2 := NewLabel; 
      Branch(L2); 
      PostLabel(L1); 
      Block; 
   end; 
   PostLabel(L2); 
   MatchString('ENDIF'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a WHILE Statement } 
 
procedure DoWhile; 
var L1, L2: string; 
begin 
   L1 := NewLabel; 
   L2 := NewLabel; 
   PostLabel(L1); 
   BoolExpression; 



   BranchFalse(L2); 
   Block; 
   MatchString('ENDWHILE'); 
   Branch(L1); 
   PostLabel(L2); 
end; 
 
 
{--------------------------------------------------------------} 
{ Process a Read Statement } 
 
procedure DoRead; 
begin 
   Match('('); 
   GetName; 
   ReadVar; 
   while Look = ',' do begin 
      Match(','); 
      GetName; 
      ReadVar; 
   end; 
   Match(')'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Process a Write Statement } 
 
procedure DoWrite; 
begin 
   Match('('); 
   Expression; 
   WriteVar; 
   while Look = ',' do begin 
      Match(','); 
      Expression; 
      WriteVar; 
   end; 
   Match(')'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Block of Statements } 
 
procedure Block; 
begin 
   Scan; 
   while not(Token in ['e', 'l']) do begin 
      case Token of 
       'i': DoIf; 
       'w': DoWhile; 
       'R': DoRead; 
       'W': DoWrite; 
      else Assignment; 
      end; 
      Scan; 



   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Allocate Storage for a Variable } 
 
procedure Alloc(N: Symbol); 
begin 
   if InTable(N) then Abort('Duplicate Variable Name ' + N); 
   AddEntry(N, 'v'); 
   Write(N, ':', TAB, 'DC '); 
   if Look = '=' then begin 
      Match('='); 
      If Look = '-' then begin 
         Write(Look); 
         Match('-'); 
      end; 
      WriteLn(GetNum); 
      end 
   else 
      WriteLn('0'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Data Declaration } 
 
procedure Decl; 
begin 
   GetName; 
   Alloc(Value); 
   while Look = ',' do begin 
      Match(','); 
      GetName; 
      Alloc(Value); 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate Global Declarations } 
 
procedure TopDecls; 
begin 
   Scan; 
   while Token <> 'b' do begin 
      case Token of 
        'v': Decl; 
      else Abort('Unrecognized Keyword ' + Value); 
      end; 
      Scan; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 



{ Parse and Translate a Main Program } 
 
procedure Main; 
begin 
   MatchString('BEGIN'); 
   Prolog; 
   Block; 
   MatchString('END'); 
   Epilog; 
end; 
 
 
{--------------------------------------------------------------} 
{  Parse and Translate a Program } 
 
procedure Prog; 
begin 
   MatchString('PROGRAM'); 
   Header; 
   TopDecls; 
   Main; 
   Match('.'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Initialize } 
 
procedure Init; 
var i: integer; 
begin 
   for i := 1 to MaxEntry do begin 
      ST[i] := ''; 
      SType[i] := ' '; 
   end; 
   GetChar; 
   Scan; 
end; 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
   Init; 
   Prog; 
   if Look <> CR then Abort('Unexpected data after ''.'''); 
end. 
{--------------------------------------------------------------} 
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INTRODUCTION 
 
I've got some  good news and some bad news.  The bad news is that 
this installment is  not  the  one  I promised last time.  What's 
more, the one after this one won't be, either. 
 



The good news is the reason for this installment:  I've  found  a 
way  to simplify and improve the lexical  scanning  part  of  the 
compiler.  Let me explain. 
 
 
BACKGROUND 
 
If  you'll remember, we talked at length  about  the  subject  of 
lexical  scanners in Part VII, and I left you with a design for a 
distributed scanner that I felt was about as simple  as  I  could 
make it ... more than most that I've  seen  elsewhere.    We used 
that idea in Part X.  The compiler structure  that  resulted  was 
simple, and it got the job done. 
 
Recently, though, I've begun  to  have  problems, and they're the 
kind that send a message that you might be doing something wrong. 
 
The  whole thing came to a head when I tried to address the issue 
of  semicolons.  Several people have asked  me  about  them,  and 
whether or not KISS will have them separating the statements.  My 
intention has been NOT to  use semicolons, simply because I don't 
like them and, as you can see, they have not proved necessary. 
 
But I know that many of you, like me, have  gotten  used to them, 
and so  I  set  out  to write a short installment to show you how 
they could easily be added, if you were so inclined. 
 
Well, it  turned  out  that  they weren't easy to add at all.  In 
fact it was darned difficult. 
 
I guess I should have  realized that something was wrong, because 
of the issue  of  newlines.    In the last couple of installments 
we've addressed that issue,  and  I've shown you how to deal with 
newlines with a  procedure called, appropriately enough, NewLine. 
In  TINY  Version  1.0,  I  sprinkled calls to this procedure  in 
strategic spots in the code. 
 
It  seems  that  every time I've addressed the issue of newlines, 
though,  I've found it to be tricky,  and  the  resulting  parser 
turned out to be quite fragile ... one addition or  deletion here 
or  there and things tended to go to pot.  Looking back on it,  I 
realize that  there  was  a  message  in  this that I just wasn't 
paying attention to. 
 
When I tried to add semicolons  on  top of the newlines, that was 
the last straw.   I ended up with much too complex a solution.  I 
began to realize that something fundamental had to change. 
 
So,  in  a  way this installment will cause us to backtrack a bit 
and revisit the issue of scanning all over again.    Sorry  about 
that.  That's the price you pay for watching me  do  this in real 
time.  But the new version is definitely an improvement, and will 
serve us well for what is to come. 
 
As  I said, the scanner we used in Part X was about as simple  as 
one can get.  But anything can be improved.   The  new scanner is 
more like the classical  scanner,  and  not  as simple as before. 



But the overall  compiler  structure is even simpler than before. 
It's also more robust, and easier to add  to  and/or  modify.   I 
think that's worth the time spent in this digression.  So in this 
installment, I'll be showing  you  the  new  structure.  No doubt 
you'll  be  happy  to  know  that, while the changes affect  many 
procedures, they aren't very profound  and so we lose very little 
of what's been done so far. 
 
Ironically, the new scanner  is  much  more conventional than the 
old one, and is very much like the more generic scanner  I showed 
you  earlier  in  Part VII.  Then I started trying to get clever, 
and I almost clevered myself clean out of business.   You'd think 
one day I'd learn: K-I-S-S! 
 
 
THE PROBLEM 
 
The problem begins to show  itself in procedure Block, which I've 
reproduced below: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Block of Statements } 
 
procedure Block; 
begin 
   Scan; 
   while not(Token in ['e', 'l']) do begin 
      case Token of 
       'i': DoIf; 
       'w': DoWhile; 
       'R': DoRead; 
       'W': DoWrite; 
      else Assignment; 
      end; 
      Scan; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
As  you   can  see,  Block  is  oriented  to  individual  program 
statements.  At each pass through  the  loop, we know that we are 
at  the beginning of a statement.  We exit the block when we have 
scanned an END or an ELSE. 
 
But suppose that we see a semicolon instead.   The  procedure  as 
it's shown above  can't  handle that, because procedure Scan only 
expects and can only accept tokens that begin with a letter. 
 
I  tinkered  around for quite awhile to come up with a  fix.    I 
found many possible approaches, but none were very satisfying.  I 
finally figured out the reason. 
 
Recall that when we started with our single-character parsers, we 
adopted a convention that the lookahead character would always be 
prefetched.    That   is,   we  would  have  the  character  that 



corresponds to our  current  position in the input stream fetched 
into the global character Look, so that we could  examine  it  as 
many  times  as  needed.    The  rule  we  adopted was that EVERY 
recognizer, if it found its target token, would  advance  Look to 
the next character in the input stream. 
 
That simple and fixed convention served us very well when  we had 
single-character tokens, and it still does.  It would make  a lot 
of sense to apply the same rule to multi-character tokens. 
 
But when we got into lexical scanning, I began  to  violate  that 
simple rule.  The scanner of Part X  did  indeed  advance  to the 
next token if it found an identifier or keyword, but it DIDN'T do 
that if it found a carriage return, a whitespace character, or an 
operator. 
 
Now, that sort of mixed-mode  operation gets us into deep trouble 
in procedure Block, because whether or not the  input  stream has 
been advanced depends upon the kind of token we  encounter.    If 
it's  a keyword or the target of  an  assignment  statement,  the 
"cursor," as defined by the contents of Look,  has  been advanced 
to  the next token OR to the beginning of whitespace.  If, on the 
other  hand,  the  token  is  a  semicolon,  or if we have hit  a 
carriage return, the cursor has NOT advanced. 
 
Needless to say, we can add enough logic  to  keep  us  on track. 
But it's tricky, and makes the whole parser very fragile. 
 
There's a much  better  way,  and  that's just to adopt that same 
rule that's worked so well before, to apply to TOKENS as  well as 
single characters.  In other words, we'll prefetch tokens just as 
we've always done for  characters.   It seems so obvious once you 
think about it that way. 
 
Interestingly enough, if we do things this way  the  problem that 
we've had with newline characters goes away.  We  can  just  lump 
them in as  whitespace  characters, which means that the handling 
of  newlines  becomes  very trivial, and MUCH less prone to error 
than we've had to deal with in the past. 
 
 
THE SOLUTION 
 
Let's  begin  to  fix  the  problem  by  re-introducing  the  two 
procedures: 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
procedure GetName; 
begin 
   SkipWhite; 
   if Not IsAlpha(Look) then Expected('Identifier'); 
   Token := 'x'; 
   Value := ''; 
   repeat 
      Value := Value + UpCase(Look); 



      GetChar; 
   until not IsAlNum(Look); 
end; 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
procedure GetNum; 
begin 
   SkipWhite; 
   if not IsDigit(Look) then Expected('Number'); 
   Token := '#'; 
   Value := ''; 
   repeat 
      Value := Value + Look; 
      GetChar; 
   until not IsDigit(Look); 
end; 
{--------------------------------------------------------------} 
 
 
These two procedures are  functionally  almost  identical  to the 
ones  I  showed  you in Part VII.  They each  fetch  the  current 
token, either an identifier or a number, into  the  global string 
Value.    They  also  set  the  encoded  version, Token,  to  the 
appropriate code.  The input  stream is left with Look containing 
the first character NOT part of the token. 
 
We  can do the same thing  for  operators,  even  multi-character 
operators, with a procedure such as: 
 
 
{--------------------------------------------------------------} 
{ Get an Operator } 
 
procedure GetOp; 
begin 
   Token := Look; 
   Value := ''; 
   repeat 
      Value := Value + Look; 
      GetChar; 
   until IsAlpha(Look) or IsDigit(Look) or IsWhite(Look); 
end; 
{--------------------------------------------------------------} 
 
Note  that  GetOp  returns,  as  its  encoded  token,  the  FIRST 
character of the operator.  This is important,  because  it means 
that we can now use that single character to  drive  the  parser, 
instead of the lookahead character. 
 
We need to tie these  procedures together into a single procedure 
that can handle all three  cases.  The  following  procedure will 
read any one of the token types and always leave the input stream 
advanced beyond it: 
 



 
{--------------------------------------------------------------} 
{ Get the Next Input Token } 
 
procedure Next; 
begin 
   SkipWhite; 
   if IsAlpha(Look) then GetName 
   else if IsDigit(Look) then GetNum 
   else GetOp; 
end; 
{--------------------------------------------------------------} 
 
 
***NOTE  that  here  I have put SkipWhite BEFORE the calls rather 
than after.  This means that, in general, the variable  Look will 
NOT have a meaningful value in it, and therefore  we  should  NOT 
use it as a test value for parsing, as we have been doing so far. 
That's the big departure from our normal approach. 
 
Now, remember that before I was careful not to treat the carriage 
return (CR) and line  feed  (LF) characters as white space.  This 
was  because,  with  SkipWhite  called  as the last thing in  the 
scanner, the encounter with  LF  would  trigger a read statement. 
If we were on the last line of the program,  we  couldn't get out 
until we input another line with a non-white  character.   That's 
why I needed the second procedure, NewLine, to handle the CRLF's. 
 
But now, with the call  to SkipWhite coming first, that's exactly 
the behavior we want.    The  compiler  must know there's another 
token coming or it wouldn't be calling Next.  In other words,  it 
hasn't found the terminating  END  yet.  So we're going to insist 
on more data until we find something. 
 
All this means that we can greatly simplify both the  program and 
the concepts, by treating CR and LF as whitespace characters, and 
eliminating NewLine.  You  can  do  that  simply by modifying the 
function IsWhite: 
 
 
{--------------------------------------------------------------} 
{ Recognize White Space } 
 
function IsWhite(c: char): boolean; 
begin 
   IsWhite := c in [' ', TAB, CR, LF]; 
end; 
{--------------------------------------------------------------} 
 
 
We've already tried similar routines in Part VII,  but  you might 
as well try these new ones out.  Add them to a copy of the Cradle 
and call Next with the following main program: 
 
 
{--------------------------------------------------------------} 
{ Main Program } 



 
begin 
   Init; 
   repeat 
      Next; 
      WriteLn(Token, ' ', Value); 
   until Token = '.'; 
end. 
{--------------------------------------------------------------} 
 
 
Compile  it and verify that you can separate  a  program  into  a 
series of tokens, and that you get the right  encoding  for  each 
token. 
 
This ALMOST works,  but  not  quite.    There  are  two potential 
problems:    First,  in KISS/TINY almost all of our operators are 
single-character operators.  The only exceptions  are  the relops 
>=, <=, and <>.  It seems  a  shame  to  treat  all  operators as 
strings and do a  string  compare,  when  only a single character 
compare  will  almost  always  suffice.   Second, and  much  more 
important, the  thing  doesn't  WORK  when  two  operators appear 
together, as in (a+b)*(c+d).  Here the string following 'b' would 
be interpreted as a single operator ")*(." 
 
It's possible to fix that problem.  For example,  we  could  just 
give GetOp a  list  of  legal  characters, and we could treat the 
parentheses as different operator types  than  the  others.   But 
this begins to get messy. 
 
Fortunately, there's a  better  way that solves all the problems. 
Since almost  all the operators are single characters, let's just 
treat  them  that  way, and let GetOp get only one character at a 
time.  This not only simplifies GetOp, but also speeds  things up 
quite a  bit.    We  still have the problem of the relops, but we 
were treating them as special cases anyway. 
 
So here's the final version of GetOp: 
 
 
{--------------------------------------------------------------} 
{ Get an Operator } 
 
procedure GetOp; 
begin 
   SkipWhite; 
   Token := Look; 
   Value := Look; 
   GetChar; 
end; 
{--------------------------------------------------------------} 
 
 
Note that I still give the string Value a value.  If you're truly 
concerned about efficiency, you could leave this out.  When we're 
expecting an operator, we will only be testing  Token  anyhow, so 
the  value of the string won't matter.  But to me it seems to  be 



good practice to give the thing a value just in case. 
 
Try  this  new  version with some realistic-looking  code.    You 
should  be  able  to  separate  any program into  its  individual 
tokens, with the  caveat  that the two-character relops will scan 
into two separate tokens.  That's OK ... we'll  parse  them  that 
way. 
 
Now, in Part VII the function of Next was combined with procedure 
Scan,  which  also  checked every identifier against  a  list  of 
keywords and encoded each one that was found.  As I  mentioned at 
the time, the last thing we would want  to  do  is  to use such a 
procedure in places where keywords  should not appear, such as in 
expressions.  If we  did  that, the keyword list would be scanned 
for every identifier appearing in the code.  Not good. 
 
The  right  way  to  deal  with  that  is  to simply separate the 
functions  of  fetching  tokens and looking for  keywords.    The 
version of Scan shown below  does NOTHING but check for keywords. 
Notice that it operates on the current token and does NOT advance 
the input stream. 
 
 
{--------------------------------------------------------------} 
{ Scan the Current Identifier for Keywords } 
 
procedure Scan; 
begin 
   if Token = 'x' then 
      Token := KWcode[Lookup(Addr(KWlist), Value, NKW) + 1]; 
end; 
{--------------------------------------------------------------} 
 
 
There is one last detail.  In the compiler there are a few places 
that we must  actually  check  the  string  value  of  the token. 
Mainly, this  is done to distinguish between the different END's, 
but there are a couple  of  other  places.    (I  should  note in 
passing that we could always  eliminate the need for matching END 
characters by encoding each one  to a different character.  Right 
now we are definitely taking the lazy man's route.) 
 
The  following  version  of MatchString takes the  place  of  the 
character-oriented Match.  Note that, like Match, it DOES advance 
the input stream. 
 
 
{--------------------------------------------------------------} 
{ Match a Specific Input String } 
 
procedure MatchString(x: string); 
begin 
   if Value <> x then Expected('''' + x + ''''); 
   Next; 
end; 
{--------------------------------------------------------------} 
 



 
FIXING UP THE COMPILER 
 
Armed with these new scanner procedures, we can now begin  to fix 
the compiler to  use  them  properly.   The changes are all quite 
minor,  but  there  are quite a  few  places  where  changes  are 
necessary.  Rather than  showing  you each place, I will give you 
the general idea and then just give the finished product. 
 
 
First of all, the code for procedure Block doesn't change, though 
its function does: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Block of Statements } 
 
procedure Block; 
begin 
   Scan; 
   while not(Token in ['e', 'l']) do begin 
      case Token of 
       'i': DoIf; 
       'w': DoWhile; 
       'R': DoRead; 
       'W': DoWrite; 
      else Assignment; 
      end; 
      Scan; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
Remember that the new version of Scan doesn't  advance  the input 
stream, it only  scans  for  keywords.   The input stream must be 
advanced by each procedure that Block calls. 
 
In general, we have to replace every test on Look with  a similar 
test on Token.  For example: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Expression } 
 
procedure BoolExpression; 
begin 
   BoolTerm; 
   while IsOrOp(Token) do begin 
      Push; 
      case Token of 
       '|': BoolOr; 
       '~': BoolXor; 
      end; 
   end; 
end; 
{--------------------------------------------------------------} 



 
 
In procedures like Add, we don't  have  to use Match anymore.  We 
need only call Next to advance the input stream: 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an Add } 
 
procedure Add; 
begin 
   Next; 
   Term; 
   PopAdd; 
end; 
{-------------------------------------------------------------} 
 
 
Control  structures  are  actually simpler.  We just call Next to 
advance over the control keywords: 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate an IF Construct } 
 
procedure Block; Forward; 
 
procedure DoIf; 
var L1, L2: string; 
begin 
   Next; 
   BoolExpression; 
   L1 := NewLabel; 
   L2 := L1; 
   BranchFalse(L1); 
   Block; 
   if Token = 'l' then begin 
      Next; 
      L2 := NewLabel; 
      Branch(L2); 
      PostLabel(L1); 
      Block; 
   end; 
   PostLabel(L2); 
   MatchString('ENDIF'); 
end; 
{--------------------------------------------------------------} 
 
 
That's about the extent of the REQUIRED changes.  In  the listing 
of TINY  Version  1.1  below,  I've  also  made a number of other 
"improvements" that  aren't really required.  Let me explain them 
briefly: 
 
 (1)  I've deleted the two procedures Prog and Main, and combined 
      their functions into the main program.  They didn't seem to 
      add  to program clarity ... in fact  they  seemed  to  just 



      muddy things up a little. 
 
 (2)  I've  deleted  the  keywords  PROGRAM  and  BEGIN  from the 
      keyword list.  Each  one  only occurs in one place, so it's 
      not necessary to search for it. 
 
 (3)  Having been  bitten  by  an  overdose  of  cleverness, I've 
      reminded myself that TINY  is  supposed  to be a minimalist 
      program.  Therefore I've  replaced  the  fancy  handling of 
      unary minus with the dumbest one I could think of.  A giant 
      step backwards in code quality, but a  great simplification 
      of the compiler.  KISS is the right place to use  the other 
      version. 
 
 (4)  I've added some  error-checking routines such as CheckTable 
      and CheckDup, and  replaced  in-line code by calls to them. 
      This cleans up a number of routines. 
 
 (5)  I've  taken  the  error  checking  out  of  code generation 
      routines  like Store, and put it in  the  parser  where  it 
      belongs.  See Assignment, for example. 
 
 (6)  There was an error in InTable and Locate  that  caused them 
      to search all locations  instead  of  only those with valid 
      data  in them.  They now search only  valid  cells.    This 
      allows us to eliminate  the  initialization  of  the symbol 
      table, which was done in Init. 
 
 (7)  Procedure AddEntry now has two  arguments,  which  helps to 
      make things a bit more modular. 
 
 (8)  I've cleaned up the  code  for  the relational operators by 
      the addition of the  new  procedures  CompareExpression and 
      NextExpression. 
 
 (9)  I fixed an error in the Read routine ... the  earlier value 
      did not check for a valid variable name. 
 
 
 CONCLUSION 
 
The resulting compiler for  TINY  is given below.  Other than the 
removal  of  the  keyword PROGRAM, it parses the same language as 
before.    It's  just  a  bit cleaner, and more importantly  it's 
considerably more robust.  I feel good about it. 
 
The next installment will be another  digression:  the discussion 
of  semicolons  and  such that got me into this mess in the first 
place.  THEN we'll press on  into  procedures and types.  Hang in 
there with me.  The addition of those features will go a long way 
towards removing KISS from  the  "toy  language" category.  We're 
getting very close to being able to write a serious compiler. 
 
 
TINY VERSION 1.1 
 
 



{--------------------------------------------------------------} 
program Tiny11; 
 
{--------------------------------------------------------------} 
{ Constant Declarations } 
 
const TAB = ^I; 
      CR  = ^M; 
      LF  = ^J; 
 
      LCount: integer = 0; 
      NEntry: integer = 0; 
 
 
{--------------------------------------------------------------} 
{ Type Declarations } 
 
type Symbol = string[8]; 
 
     SymTab = array[1..1000] of Symbol; 
 
     TabPtr = ^SymTab; 
 
 
{--------------------------------------------------------------} 
{ Variable Declarations } 
 
var Look : char;             { Lookahead Character } 
    Token: char;             { Encoded Token       } 
    Value: string[16];       { Unencoded Token     } 
 
 
const MaxEntry = 100; 
 
var ST   : array[1..MaxEntry] of Symbol; 
    SType: array[1..MaxEntry] of char; 
 
 
{--------------------------------------------------------------} 
{ Definition of Keywords and Token Types } 
 
const NKW =   9; 
      NKW1 = 10; 
 
const KWlist: array[1..NKW] of Symbol = 
              ('IF', 'ELSE', 'ENDIF', 'WHILE', 'ENDWHILE', 
               'READ', 'WRITE', 'VAR', 'END'); 
 
const KWcode: string[NKW1] = 'xileweRWve'; 
 
 
{--------------------------------------------------------------} 
{ Read New Character From Input Stream } 
 
procedure GetChar; 
begin 
   Read(Look); 



end; 
 
{--------------------------------------------------------------} 
{ Report an Error } 
 
procedure Error(s: string); 
begin 
   WriteLn; 
   WriteLn(^G, 'Error: ', s, '.'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Report Error and Halt } 
 
procedure Abort(s: string); 
begin 
   Error(s); 
   Halt; 
end; 
 
 
{--------------------------------------------------------------} 
{ Report What Was Expected } 
 
procedure Expected(s: string); 
begin 
   Abort(s + ' Expected'); 
end; 
 
{--------------------------------------------------------------} 
{ Report an Undefined Identifier } 
 
procedure Undefined(n: string); 
begin 
   Abort('Undefined Identifier ' + n); 
end; 
 
 
{--------------------------------------------------------------} 
{ Report a Duplicate Identifier } 
 
procedure Duplicate(n: string); 
begin 
   Abort('Duplicate Identifier ' + n); 
end; 
 
 
{--------------------------------------------------------------} 
{ Check to Make Sure the Current Token is an Identifier } 
 
procedure CheckIdent; 
begin 
   if Token <> 'x' then Expected('Identifier'); 
end; 
 
 



{--------------------------------------------------------------} 
{ Recognize an Alpha Character } 
 
function IsAlpha(c: char): boolean; 
begin 
   IsAlpha := UpCase(c) in ['A'..'Z']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Decimal Digit } 
 
function IsDigit(c: char): boolean; 
begin 
   IsDigit := c in ['0'..'9']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an AlphaNumeric Character } 
 
function IsAlNum(c: char): boolean; 
begin 
   IsAlNum := IsAlpha(c) or IsDigit(c); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an Addop } 
 
function IsAddop(c: char): boolean; 
begin 
   IsAddop := c in ['+', '-']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Mulop } 
 
function IsMulop(c: char): boolean; 
begin 
   IsMulop := c in ['*', '/']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Boolean Orop } 
 
function IsOrop(c: char): boolean; 
begin 
   IsOrop := c in ['|', '~']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Relop } 
 



function IsRelop(c: char): boolean; 
begin 
   IsRelop := c in ['=', '#', '<', '>']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize White Space } 
 
function IsWhite(c: char): boolean; 
begin 
   IsWhite := c in [' ', TAB, CR, LF]; 
end; 
 
 
{--------------------------------------------------------------} 
{ Skip Over Leading White Space } 
 
procedure SkipWhite; 
begin 
   while IsWhite(Look) do 
      GetChar; 
end; 
 
 
{--------------------------------------------------------------} 
{ Table Lookup } 
 
function Lookup(T: TabPtr; s: string; n: integer): integer; 
var i: integer; 
    found: Boolean; 
begin 
   found := false; 
   i := n; 
   while (i > 0) and not found do 
      if s = T^[i] then 
         found := true 
      else 
         dec(i); 
   Lookup := i; 
end; 
 
 
{--------------------------------------------------------------} 
{ Locate a Symbol in Table } 
{ Returns the index of the entry.  Zero if not present. } 
 
function Locate(N: Symbol): integer; 
begin 
   Locate := Lookup(@ST, n, NEntry); 
end; 
 
 
{--------------------------------------------------------------} 
{ Look for Symbol in Table } 
 
function InTable(n: Symbol): Boolean; 



begin 
   InTable := Lookup(@ST, n, NEntry) <> 0; 
end; 
 
 
{--------------------------------------------------------------} 
{ Check to See if an Identifier is in the Symbol Table         } 
{ Report an error if it's not. } 
 
 
procedure CheckTable(N: Symbol); 
begin 
   if not InTable(N) then Undefined(N); 
end; 
 
 
{--------------------------------------------------------------} 
{ Check the Symbol Table for a Duplicate Identifier } 
{ Report an error if identifier is already in table. } 
 
 
procedure CheckDup(N: Symbol); 
begin 
   if InTable(N) then Duplicate(N); 
end; 
 
 
{--------------------------------------------------------------} 
{ Add a New Entry to Symbol Table } 
 
procedure AddEntry(N: Symbol; T: char); 
begin 
   CheckDup(N); 
   if NEntry = MaxEntry then Abort('Symbol Table Full'); 
   Inc(NEntry); 
   ST[NEntry] := N; 
   SType[NEntry] := T; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
procedure GetName; 
begin 
   SkipWhite; 
   if Not IsAlpha(Look) then Expected('Identifier'); 
   Token := 'x'; 
   Value := ''; 
   repeat 
      Value := Value + UpCase(Look); 
      GetChar; 
   until not IsAlNum(Look); 
end; 
 
 
{--------------------------------------------------------------} 



{ Get a Number } 
 
procedure GetNum; 
begin 
   SkipWhite; 
   if not IsDigit(Look) then Expected('Number'); 
   Token := '#'; 
   Value := ''; 
   repeat 
      Value := Value + Look; 
      GetChar; 
   until not IsDigit(Look); 
end; 
 
 
{--------------------------------------------------------------} 
{ Get an Operator } 
 
procedure GetOp; 
begin 
   SkipWhite; 
   Token := Look; 
   Value := Look; 
   GetChar; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get the Next Input Token } 
 
procedure Next; 
begin 
   SkipWhite; 
   if IsAlpha(Look) then GetName 
   else if IsDigit(Look) then GetNum 
   else GetOp; 
end; 
 
 
{--------------------------------------------------------------} 
{ Scan the Current Identifier for Keywords } 
 
procedure Scan; 
begin 
   if Token = 'x' then 
      Token := KWcode[Lookup(Addr(KWlist), Value, NKW) + 1]; 
end; 
 
 
{--------------------------------------------------------------} 
{ Match a Specific Input String } 
 
procedure MatchString(x: string); 
begin 
   if Value <> x then Expected('''' + x + ''''); 
   Next; 
end; 



 
 
{--------------------------------------------------------------} 
{ Output a String with Tab } 
 
procedure Emit(s: string); 
begin 
   Write(TAB, s); 
end; 
 
 
{--------------------------------------------------------------} 
{ Output a String with Tab and CRLF } 
 
procedure EmitLn(s: string); 
begin 
   Emit(s); 
   WriteLn; 
end; 
 
 
{--------------------------------------------------------------} 
{ Generate a Unique Label } 
 
function NewLabel: string; 
var S: string; 
begin 
   Str(LCount, S); 
   NewLabel := 'L' + S; 
   Inc(LCount); 
end; 
 
 
{--------------------------------------------------------------} 
{ Post a Label To Output } 
 
procedure PostLabel(L: string); 
begin 
   WriteLn(L, ':'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Clear the Primary Register } 
 
procedure Clear; 
begin 
   EmitLn('CLR D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Negate the Primary Register } 
 
procedure Negate; 
begin 
   EmitLn('NEG D0'); 



end; 
 
 
{---------------------------------------------------------------} 
{ Complement the Primary Register } 
 
procedure NotIt; 
begin 
   EmitLn('NOT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Load a Constant Value to Primary Register } 
 
procedure LoadConst(n: string); 
begin 
   Emit('MOVE #'); 
   WriteLn(n, ',D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Load a Variable to Primary Register } 
 
procedure LoadVar(Name: string); 
begin 
   if not InTable(Name) then Undefined(Name); 
   EmitLn('MOVE ' + Name + '(PC),D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Push Primary onto Stack } 
 
procedure Push; 
begin 
   EmitLn('MOVE D0,-(SP)'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Add Top of Stack to Primary } 
 
procedure PopAdd; 
begin 
   EmitLn('ADD (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Subtract Primary from Top of Stack } 
 
procedure PopSub; 
begin 
   EmitLn('SUB (SP)+,D0'); 
   EmitLn('NEG D0'); 



end; 
 
 
{---------------------------------------------------------------} 
{ Multiply Top of Stack by Primary } 
 
procedure PopMul; 
begin 
   EmitLn('MULS (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Divide Top of Stack by Primary } 
 
procedure PopDiv; 
begin 
   EmitLn('MOVE (SP)+,D7'); 
   EmitLn('EXT.L D7'); 
   EmitLn('DIVS D0,D7'); 
   EmitLn('MOVE D7,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ AND Top of Stack with Primary } 
 
procedure PopAnd; 
begin 
   EmitLn('AND (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ OR Top of Stack with Primary } 
 
procedure PopOr; 
begin 
   EmitLn('OR (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ XOR Top of Stack with Primary } 
 
procedure PopXor; 
begin 
   EmitLn('EOR (SP)+,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Compare Top of Stack with Primary } 
 
procedure PopCompare; 
begin 
   EmitLn('CMP (SP)+,D0'); 



end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was = } 
 
procedure SetEqual; 
begin 
   EmitLn('SEQ D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was != } 
 
procedure SetNEqual; 
begin 
   EmitLn('SNE D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was > } 
 
procedure SetGreater; 
begin 
   EmitLn('SLT D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was < } 
 
procedure SetLess; 
begin 
   EmitLn('SGT D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was <= } 
 
procedure SetLessOrEqual; 
begin 
   EmitLn('SGE D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Set D0 If Compare was >= } 
 
procedure SetGreaterOrEqual; 



begin 
   EmitLn('SLE D0'); 
   EmitLn('EXT D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Store Primary to Variable } 
 
procedure Store(Name: string); 
begin 
   EmitLn('LEA ' + Name + '(PC),A0'); 
   EmitLn('MOVE D0,(A0)') 
end; 
 
 
{---------------------------------------------------------------} 
{ Branch Unconditional  } 
 
procedure Branch(L: string); 
begin 
   EmitLn('BRA ' + L); 
end; 
 
 
{---------------------------------------------------------------} 
{ Branch False } 
 
procedure BranchFalse(L: string); 
begin 
   EmitLn('TST D0'); 
   EmitLn('BEQ ' + L); 
end; 
 
 
{---------------------------------------------------------------} 
{ Read Variable to Primary Register } 
 
procedure ReadIt(Name: string); 
begin 
   EmitLn('BSR READ'); 
   Store(Name); 
end; 
 
 
{ Write from Primary Register } 
 
procedure WriteIt; 
begin 
   EmitLn('BSR WRITE'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Write Header Info } 
 
procedure Header; 



begin 
   WriteLn('WARMST', TAB, 'EQU $A01E'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Write the Prolog } 
 
procedure Prolog; 
begin 
   PostLabel('MAIN'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Write the Epilog } 
 
procedure Epilog; 
begin 
   EmitLn('DC WARMST'); 
   EmitLn('END MAIN'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Allocate Storage for a Static Variable } 
 
procedure Allocate(Name, Val: string); 
begin 
   WriteLn(Name, ':', TAB, 'DC ', Val); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Factor } 
 
procedure BoolExpression; Forward; 
 
procedure Factor; 
begin 
   if Token = '(' then begin 
      Next; 
      BoolExpression; 
      MatchString(')'); 
      end 
   else begin 
      if Token = 'x' then 
         LoadVar(Value) 
      else if Token = '#' then 
         LoadConst(Value) 
      else Expected('Math Factor'); 
      Next; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 



{ Recognize and Translate a Multiply } 
 
procedure Multiply; 
begin 
   Next; 
   Factor; 
   PopMul; 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Divide } 
 
procedure Divide; 
begin 
   Next; 
   Factor; 
   PopDiv; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Term } 
 
procedure Term; 
begin 
   Factor; 
   while IsMulop(Token) do begin 
      Push; 
      case Token of 
       '*': Multiply; 
       '/': Divide; 
      end; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an Add } 
 
procedure Add; 
begin 
   Next; 
   Term; 
   PopAdd; 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Subtract } 
 
procedure Subtract; 
begin 
   Next; 
   Term; 
   PopSub; 
end; 



 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
procedure Expression; 
begin 
   if IsAddop(Token) then 
      Clear 
   else 
      Term; 
   while IsAddop(Token) do begin 
      Push; 
      case Token of 
       '+': Add; 
       '-': Subtract; 
      end; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Get Another Expression and Compare } 
 
procedure CompareExpression; 
begin 
   Expression; 
   PopCompare; 
end; 
 
 
{---------------------------------------------------------------} 
{ Get The Next Expression and Compare } 
 
procedure NextExpression; 
begin 
   Next; 
   CompareExpression; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Equals" } 
 
procedure Equal; 
begin 
   NextExpression; 
   SetEqual; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Less Than or Equal" } 
 
procedure LessOrEqual; 
begin 
   NextExpression; 



   SetLessOrEqual; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Not Equals" } 
 
procedure NotEqual; 
begin 
   NextExpression; 
   SetNEqual; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Less Than" } 
 
procedure Less; 
begin 
   Next; 
   case Token of 
     '=': LessOrEqual; 
     '>': NotEqual; 
   else begin 
           CompareExpression; 
           SetLess; 
        end; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate a Relational "Greater Than" } 
 
procedure Greater; 
begin 
   Next; 
   if Token = '=' then begin 
      NextExpression; 
      SetGreaterOrEqual; 
      end 
   else begin 
      CompareExpression; 
      SetGreater; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Relation } 
 
 
procedure Relation; 
begin 
   Expression; 
   if IsRelop(Token) then begin 
      Push; 



      case Token of 
       '=': Equal; 
       '<': Less; 
       '>': Greater; 
      end; 
   end; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Factor with Leading NOT } 
 
procedure NotFactor; 
begin 
   if Token = '!' then begin 
      Next; 
      Relation; 
      NotIt; 
      end 
   else 
      Relation; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Term } 
 
procedure BoolTerm; 
begin 
   NotFactor; 
   while Token = '&' do begin 
      Push; 
      Next; 
      NotFactor; 
      PopAnd; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Boolean OR } 
 
procedure BoolOr; 
begin 
   Next; 
   BoolTerm; 
   PopOr; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate an Exclusive Or } 
 
procedure BoolXor; 
begin 
   Next; 
   BoolTerm; 



   PopXor; 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Boolean Expression } 
 
procedure BoolExpression; 
begin 
   BoolTerm; 
   while IsOrOp(Token) do begin 
      Push; 
      case Token of 
       '|': BoolOr; 
       '~': BoolXor; 
      end; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment; 
var Name: string; 
begin 
   CheckTable(Value); 
   Name := Value; 
   Next; 
   MatchString('='); 
   BoolExpression; 
   Store(Name); 
end; 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate an IF Construct } 
 
procedure Block; Forward; 
 
procedure DoIf; 
var L1, L2: string; 
begin 
   Next; 
   BoolExpression; 
   L1 := NewLabel; 
   L2 := L1; 
   BranchFalse(L1); 
   Block; 
   if Token = 'l' then begin 
      Next; 
      L2 := NewLabel; 
      Branch(L2); 
      PostLabel(L1); 
      Block; 
   end; 
   PostLabel(L2); 



   MatchString('ENDIF'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a WHILE Statement } 
 
procedure DoWhile; 
var L1, L2: string; 
begin 
   Next; 
   L1 := NewLabel; 
   L2 := NewLabel; 
   PostLabel(L1); 
   BoolExpression; 
   BranchFalse(L2); 
   Block; 
   MatchString('ENDWHILE'); 
   Branch(L1); 
   PostLabel(L2); 
end; 
 
 
{--------------------------------------------------------------} 
{ Read a Single Variable } 
 
procedure ReadVar; 
begin 
   CheckIdent; 
   CheckTable(Value); 
   ReadIt(Value); 
   Next; 
end; 
 
 
{--------------------------------------------------------------} 
{ Process a Read Statement } 
 
procedure DoRead; 
begin 
   Next; 
   MatchString('('); 
   ReadVar; 
   while Token = ',' do begin 
      Next; 
      ReadVar; 
   end; 
   MatchString(')'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Process a Write Statement } 
 
procedure DoWrite; 
begin 
   Next; 



   MatchString('('); 
   Expression; 
   WriteIt; 
   while Token = ',' do begin 
      Next; 
      Expression; 
      WriteIt; 
   end; 
   MatchString(')'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Block of Statements } 
 
procedure Block; 
begin 
   Scan; 
   while not(Token in ['e', 'l']) do begin 
      case Token of 
       'i': DoIf; 
       'w': DoWhile; 
       'R': DoRead; 
       'W': DoWrite; 
      else Assignment; 
      end; 
      Scan; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Allocate Storage for a Variable } 
 
procedure Alloc; 
begin 
   Next; 
   if Token <> 'x' then Expected('Variable Name'); 
   CheckDup(Value); 
   AddEntry(Value, 'v'); 
   Allocate(Value, '0'); 
   Next; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate Global Declarations } 
 
procedure TopDecls; 
begin 
   Scan; 
   while Token = 'v' do 
      Alloc; 
      while Token = ',' do 
         Alloc; 
end; 
 



 
{--------------------------------------------------------------} 
{ Initialize } 
 
procedure Init; 
begin 
   GetChar; 
   Next; 
end; 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
   Init; 
   MatchString('PROGRAM'); 
   Header; 
   TopDecls; 
   MatchString('BEGIN'); 
   Prolog; 
   Block; 
   MatchString('END'); 
   Epilog; 
end. 
{--------------------------------------------------------------} 
***************************************************************** 
*                                                               * 
*                        COPYRIGHT NOTICE                       * 
*                                                               * 
*   Copyright (C) 1989 Jack W. Crenshaw. All rights reserved.   * 
*                                                               * 
***************************************************************** 
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***************************************************************** 
*                                                               * 
*                        COPYRIGHT NOTICE                       * 
*                                                               * 
*   Copyright (C) 1989 Jack W. Crenshaw. All rights reserved.   * 
*                                                               * 
***************************************************************** 
 
 
INTRODUCTION 
 
This installment is another one  of  those  excursions  into side 
alleys  that  don't  seem to fit  into  the  mainstream  of  this 
tutorial  series.    As I mentioned last time, it was while I was 
writing this installment that I realized some changes  had  to be 
made  to  the  compiler structure.  So I had to digress from this 
digression long enough to develop the new structure  and  show it 
to you. 
 
Now that that's behind us, I can tell you what I  set  out  to in 
the first place.  This shouldn't  take  long, and then we can get 
back into the mainstream. 
 
Several people have asked  me  about  things that other languages 
provide, but so far I haven't addressed in this series.   The two 
biggies are semicolons and  comments.    Perhaps  you've wondered 
about them, too, and  wondered  how things would change if we had 
to  deal with them.  Just so you can proceed with what's to come, 
without being  bothered by that nagging feeling that something is 
missing, we'll address such issues here. 
 
 
SEMICOLONS 
 
Ever since the introduction of Algol, semicolons have been a part 
of  almost every modern language.  We've all  used  them  to  the 
point that they are taken for  granted.   Yet I suspect that more 
compilation errors have  occurred  due  to  misplaced  or missing 
semicolons  than  any  other single cause.  And if we had a penny 
for  every  extra  keystroke programmers have used  to  type  the 
little rascals, we could pay off the national debt. 



 
Having  been  brought  up with FORTRAN, it took me a long time to 
get used to using semicolons, and to tell the  truth  I've  never 
quite understood why they  were  necessary.    Since I program in 
Pascal, and since the use of semicolons in Pascal is particularly 
tricky,  that one little character is still  by  far  my  biggest 
source of errors. 
 
When  I  began  developing  KISS,  I resolved to  question  EVERY 
construct in other languages, and to try to avoid the most common 
problems that occur with them.  That puts the semicolon very high 
on my hit list. 
 
To  understand  the  role of the semicolon, you have to look at a 
little history. 
 
Early programming languages were line-oriented.  In  FORTRAN, for 
example, various parts  of  the statement had specific columns or 
fields that they had to appear in.  Since  some  statements  were 
too  long for one line, the  "continuation  card"  mechanism  was 
provided to let  the  compiler  know  that a given card was still 
part of the previous  line.   The mechanism survives to this day, 
even though punched cards are now things of the distant past. 
 
When  other  languages  came  along,  they  also  adopted various 
mechanisms for dealing with multiple-line statements.  BASIC is a 
good  example.  It's important to  recognize,  though,  that  the 
FORTRAN  mechanism  was   not   so  much  required  by  the  line 
orientation of that  language,  as by the column-orientation.  In 
those versions of FORTRAN  where  free-form  input  is permitted, 
it's no longer needed. 
 
When the fathers  of  Algol introduced that language, they wanted 
to get away  from  line-oriented programs like FORTRAN and BASIC, 
and allow for free-form input.   This included the possibility of 
stringing multiple statements on a single line, as in 
 
 
     a=b; c=d; e=e+1; 
 
 
In cases like this,  the  semicolon is almost REQUIRED.  The same 
line, without the semicolons, just looks "funny": 
 
 
     a=b c= d e=e+1 
 
I suspect that this is the major ... perhaps ONLY ...  reason for 
semicolons: to keep programs from looking funny. 
 
But  the  idea  of stringing multiple statements  together  on  a 
single  line  is  a  dubious  one  at  best.  It's not very  good 
programming  style,  and  harks back to  the  days  when  it  was 
considered improtant to conserve cards.  In these  days  of CRT's 
and indented code, the clarity of programs is  far  better served 
by  keeping statements separate.  It's still  nice  to  have  the 
OPTION  of  multiple  statements,  but  it seems a shame to  keep 



programmers  in  slavery  to the semicolon, just to keep that one 
rare case from "looking funny." 
 
When I started in with KISS, I tried  to  keep  an  open mind.  I 
decided that I would use  semicolons when it became necessary for 
the parser, but not until then.  I figured this would happen just 
about  the time I added the ability  to  spread  statements  over 
multiple lines.  But, as you  can  see, that never happened.  The 
TINY compiler is perfectly  happy  to  parse the most complicated 
statement, spread over any number of lines, without semicolons. 
 
Still, there are people  who  have  used  semicolons for so long, 
they feel naked  without them.  I'm one of them.  Once I had KISS 
defined sufficiently well, I began to write a few sample programs 
in the language.    I  discovered,  somewhat to my horror, that I 
kept  putting  semicolons  in anyway.   So  now  I'm  facing  the 
prospect of a NEW  rash  of  compiler  errors, caused by UNWANTED 
semicolons.  Phooey! 
 
Perhaps more to the point, there are readers out  there  who  are 
designing their own languages, which may  include  semicolons, or 
who  want to use the techniques of  these  tutorials  to  compile 
conventional languages like  C.    In  either case, we need to be 
able to deal with semicolons. 
 
 
SYNTACTIC SUGAR 
 
This whole discussion brings  up  the  issue of "syntactic sugar" 
... constructs that are added to a language, not because they are 
needed, but because they help make the programs look right to the 
programmer.    After  all, it's nice  to  have  a  small,  simple 
compiler,    but  it  would  be  of  little  use if the resulting 
language  were  cryptic  and hard to program.  The language FORTH 
comes  to mind (a premature OUCH! for the  barrage  I  know  that 
one's going to fetch me).  If we can add features to the language 
that  make the programs easier to read  and  understand,  and  if 
those features  help keep the programmer from making errors, then 
we should do so.    Particularly if the constructs don't add much 
to the complexity of the language or its compiler. 
 
The  semicolon  could  be considered an example,  but  there  are 
plenty of others, such as the 'THEN' in a IF-statement,  the 'DO' 
in a WHILE-statement,  and  even the 'PROGRAM' statement, which I 
came within a gnat's eyelash of leaving out  of  TINY.    None of 
these tokens  add  much  to  the  syntax  of the language ... the 
compiler can figure out  what's  going on without them.  But some 
folks feel that they  DO  add to the readability of programs, and 
that can be very important. 
 
There are two schools of thought on this subject, which  are well 
represented by two of our most popular languages, C and Pascal. 
 
To  the minimalists, all such sugar should be  left  out.    They 
argue that it clutters up the language and adds to the  number of 
keystrokes  programmers  must type.   Perhaps  more  importantly, 
every extra token or keyword represents a trap laying in wait for 



the inattentive programmer.  If you leave out  a  token, misplace 
it, or misspell it, the compiler  will  get you.  So these people 
argue that the best approach is to get rid of such things.  These 
folks tend to like C, which has a minimum of unnecessary keywords 
and punctuation. 
 
Those from the other school tend to like Pascal.  They argue that 
having to type a few extra characters is a small price to pay for 
legibility.    After  all, humans have to read the programs, too. 
Their best argument is that each such construct is an opportunity 
to tell the compiler that you really mean for it  to  do what you 
said to.  The sugary tokens serve as useful landmarks to help you 
find your way. 
 
The differences are well represented by the two  languages.   The 
most oft-heard complaint about  C  is  that  it is too forgiving. 
When you make a mistake in C, the  erroneous  code  is  too often 
another  legal  C  construct.    So  the  compiler  just  happily 
continues to compile, and  leaves  you  to  find the error during 
debug.    I guess that's why debuggers  are  so  popular  with  C 
programmers. 
 
On the  other  hand,  if  a  Pascal  program compiles, you can be 
pretty  sure that the program will do what you told it.  If there 
is an error at run time, it's probably a design error. 
 
The  best  example  of  useful  sugar  is  the semicolon  itself. 
Consider the code fragment: 
 
 
     a=1+(2*b+c)   b... 
 
 
Since there is no operator connecting the token 'b' with the rest 
of the  statement, the compiler will conclude that the expression 
ends  with  the  ')', and the 'b'  is  the  beginning  of  a  new 
statement.    But  suppose  I  have simply left out the  intended 
operator, and I really want to say: 
 
 
     a=1+(2*b+c)*b... 
 
 
In  this  case  the compiler will get an error, all right, but it 
won't be very meaningful  since  it will be expecting an '=' sign 
after the 'b' that really shouldn't be there. 
 
If, on the other hand, I include a semicolon after the  'b', THEN 
there  can  be no doubt where I  intend  the  statement  to  end. 
Syntactic  sugar,  then,  can  serve  a  very  useful purpose  by 
providing some additional insurance that we remain on track. 
 
I find  myself  somewhere  in  the middle of all this.  I tend to 
favor the Pascal-ers' view ... I'd much rather find  my  bugs  at 
compile time rather than run time.  But I also hate to just throw 
verbosity  in  for  no apparent reason, as in COBOL.  So far I've 
consistently left most of the Pascal sugar out of KISS/TINY.  But 



I certainly have no strong feelings either way, and  I  also  can 
see the value of sprinkling a little sugar around  just  for  the 
extra  insurance  that  it  brings.    If  you like  this  latter 
approach, things like that are easy to add.  Just  remember that, 
like  the semicolon, each item of sugar  is  something  that  can 
potentially cause a compile error by its omission. 
 
 
DEALING WITH SEMICOLONS 
 
There  are  two  distinct  ways  in which semicolons are used  in 
popular  languages.    In Pascal, the semicolon is regarded as an 
statement SEPARATOR.  No semicolon  is  required  after  the last 
statement in a block.  The syntax is: 
 
 
     <block> ::= <statement> ( ';' <statement>)* 
 
     <statement> ::= <assignment> | <if> | <while> ... | null 
 
 
(The null statement is IMPORTANT!) 
 
Pascal  also defines some semicolons in  other  places,  such  as 
after the PROGRAM statement. 
 
In  C  and  Ada, on the other hand, the semicolon is considered a 
statement TERMINATOR,  and  follows  all  statements  (with  some 
embarrassing and confusing  exceptions).   The syntax for this is 
simply: 
 
 
     <block> ::= ( <statement> ';')* 
 
 
Of  the two syntaxes, the Pascal one seems on the face of it more 
rational, but experience has shown  that it leads to some strange 
difficulties.  People get  so  used  to  typing a semicolon after 
every  statement  that  they tend to  type  one  after  the  last 
statement in a block, also.  That usually doesn't cause  any harm 
...  it  just gets treated as a  null  statement.    Many  Pascal 
programmers, including yours truly,  do  just  that. But there is 
one  place you absolutely CANNOT type  a  semicolon,  and  that's 
right before an ELSE.  This little gotcha  has  cost  me  many an 
extra  compilation,  particularly  when  the  ELSE  is  added  to 
existing code.    So  the  C/Ada  choice  turns out to be better. 
Apparently Nicklaus Wirth thinks so, too:  In his  Modula  2,  he 
abandoned the Pascal approach. 
 
Given either of these two syntaxes, it's an easy matter (now that 
we've  reorganized  the  parser!) to add these  features  to  our 
parser.  Let's take the last case first, since it's simpler. 
 
To begin, I've made things easy by introducing a new recognizer: 
 
 
{--------------------------------------------------------------} 



{ Match a Semicolon } 
 
procedure Semi; 
begin 
   MatchString(';'); 
end; 
{--------------------------------------------------------------} 
 
 
This procedure works very much like our old Match.  It insists on 
finding a semicolon as the next token.  Having found it, it skips 
to the next one. 
 
Since a  semicolon follows a statement, procedure Block is almost 
the only one we need to change: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Block of Statements } 
 
procedure Block; 
begin 
   Scan; 
   while not(Token in ['e', 'l']) do begin 
      case Token of 
       'i': DoIf; 
       'w': DoWhile; 
       'R': DoRead; 
       'W': DoWrite; 
       'x': Assignment; 
      end; 
      Semi; 
      Scan; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
Note carefully the subtle change in the case statement.  The call 
to  Assignment  is now guarded by a test on Token.   This  is  to 
avoid calling Assignment when the  token  is  a  semicolon (which 
could happen if the statement is null). 
 
Since declarations are also  statements,  we  also  need to add a 
call to Semi within procedure TopDecls: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate Global Declarations } 
 
procedure TopDecls; 
begin 
   Scan; 
   while Token = 'v' do begin 
      Alloc; 
      while Token = ',' do 
         Alloc; 



      Semi; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
Finally, we need one for the PROGRAM statement: 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
   Init; 
   MatchString('PROGRAM'); 
   Semi; 
   Header; 
   TopDecls; 
   MatchString('BEGIN'); 
   Prolog; 
   Block; 
   MatchString('END'); 
   Epilog; 
end. 
{--------------------------------------------------------------} 
 
 
It's as easy as that.  Try it with a copy of TINY and see how you 
like it. 
 
The Pascal version  is  a  little  trickier,  but  it  still only 
requires  minor  changes,  and those only to procedure Block.  To 
keep things as simple as possible, let's split the procedure into 
two parts.  The following procedure handles just one statement: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Single Statement } 
 
procedure Statement; 
begin 
   Scan; 
   case Token of 
    'i': DoIf; 
    'w': DoWhile; 
    'R': DoRead; 
    'W': DoWrite; 
    'x': Assignment; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
Using this procedure, we can now rewrite Block like this: 
 
 
{--------------------------------------------------------------} 



{ Parse and Translate a Block of Statements } 
 
procedure Block; 
begin 
   Statement; 
   while Token = ';' do begin 
      Next; 
      Statement; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
That  sure  didn't  hurt, did it?  We can now parse semicolons in 
Pascal-like fashion. 
 
 
A COMPROMISE 
 
Now that we know how to deal with semicolons, does that mean that 
I'm going to put them in KISS/TINY?  Well, yes and  no.    I like 
the extra sugar and the security that comes with knowing for sure 
where the  ends  of  statements  are.    But I haven't changed my 
dislike for the compilation errors associated with semicolons. 
 
So I have what I think is a nice compromise: Make them OPTIONAL! 
 
Consider the following version of Semi: 
 
 
{--------------------------------------------------------------} 
{ Match a Semicolon } 
 
procedure Semi; 
begin 
   if Token = ';' then Next; 
end; 
{--------------------------------------------------------------} 
 
 
This procedure will ACCEPT a semicolon whenever it is called, but 
it won't INSIST on one.  That means that when  you  choose to use 
semicolons, the compiler  will  use the extra information to help 
keep itself on track.  But if you omit one (or omit them all) the 
compiler won't complain.  The best of both worlds. 
 
Put this procedure in place in the first version of  your program 
(the  one for C/Ada syntax), and you have  the  makings  of  TINY 
Version 1.2. 
 
 
COMMENTS 
 
Up  until  now  I have carefully avoided the subject of comments. 
You would think that this would be an easy subject ... after all, 
the compiler doesn't have to deal with comments at all; it should 
just ignore them.  Well, sometimes that's true. 



 
Comments can be just about as easy or as difficult as  you choose 
to make them.    At  one  extreme,  we can arrange things so that 
comments  are  intercepted  almost  the  instant  they  enter the 
compiler.  At the  other,  we can treat them as lexical elements. 
Things  tend to get interesting when  you  consider  things  like 
comment delimiters contained in quoted strings. 
 
 
SINGLE-CHARACTER DELIMITERS 
 
Here's an example.  Suppose we assume the  Turbo  Pascal standard 
and use curly braces for comments.  In this case we  have single- 
character delimiters, so our parsing is a little easier. 
 
One  approach  is  to  strip  the  comments  out the  instant  we 
encounter them in the input stream; that is,  right  in procedure 
GetChar.    To  do  this,  first  change  the  name of GetChar to 
something else, say GetCharX.  (For the record, this is  going to 
be a TEMPORARY change, so best not do this with your only copy of 
TINY.  I assume you understand that you should  always  do  these 
experiments with a working copy.) 
 
Now, we're going to need a  procedure  to skip over comments.  So 
key in the following one: 
 
 
{--------------------------------------------------------------} 
{ Skip A Comment Field } 
 
procedure SkipComment; 
begin 
   while Look <> '}' do 
      GetCharX; 
   GetCharX; 
end; 
{--------------------------------------------------------------} 
 
 
Clearly, what this procedure is going to do is to simply read and 
discard characters from the input  stream, until it finds a right 
curly brace.  Then it reads one more character and returns  it in 
Look. 
 
Now we can  write  a  new  version of GetChar that SkipComment to 
strip out comments: 
 
 
{--------------------------------------------------------------} 
{ Get Character from Input Stream } 
{ Skip Any Comments } 
 
procedure GetChar; 
begin 
   GetCharX; 
   if Look = '{' then SkipComment; 
end; 



{--------------------------------------------------------------} 
 
 
Code this up  and  give  it  a  try.    You'll find that you can, 
indeed, bury comments anywhere you like.  The comments never even 
get into the parser proper ... every call to GetChar just returns 
any character that's NOT part of a comment. 
 
As a matter of fact, while  this  approach gets the job done, and 
may even be  perfectly  satisfactory  for  you, it does its job a 
little  TOO  well.    First  of all, most  programming  languages 
specify that a comment should be treated like a  space,  so  that 
comments aren't allowed  to  be embedded in, say, variable names. 
This current version doesn't care WHERE you put comments. 
 
Second, since the  rest  of  the  parser can't even receive a '{' 
character, you will not be allowed to put one in a quoted string. 
 
Before you turn up your nose at this simplistic solution, though, 
I should point out  that  as respected a compiler as Turbo Pascal 
also won't allow  a  '{' in a quoted string.  Try it.  And as for 
embedding a comment in an  identifier, I can't imagine why anyone 
would want to do such a  thing,  anyway, so the question is moot. 
For 99% of all  applications,  what I've just shown you will work 
just fine. 
 
But,  if  you  want  to  be  picky  about it  and  stick  to  the 
conventional treatment, then we  need  to  move  the interception 
point downstream a little further. 
 
To  do  this,  first change GetChar back to the way  it  was  and 
change the name called in SkipComment.  Then, let's add  the left 
brace as a possible whitespace character: 
 
 
{--------------------------------------------------------------} 
{ Recognize White Space } 
 
function IsWhite(c: char): boolean; 
begin 
   IsWhite := c in [' ', TAB, CR, LF, '{']; 
end; 
{--------------------------------------------------------------} 
 
 
Now, we can deal with comments in procedure SkipWhite: 
 
 
{--------------------------------------------------------------} 
{ Skip Over Leading White Space } 
 
procedure SkipWhite; 
begin 
   while IsWhite(Look) do begin 
      if Look = '{' then 
         SkipComment 
      else 



         GetChar; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
Note  that SkipWhite is written so that we  will  skip  over  any 
combination of whitespace characters and comments, in one call. 
 
OK, give this one a try, too.   You'll  find  that  it will let a 
comment serve to delimit tokens.  It's worth mentioning that this 
approach also gives us the  ability to handle curly braces within 
quoted strings, since within such  strings we will not be testing 
for or skipping over whitespace. 
 
There's one last  item  to  deal  with:  Nested  comments.   Some 
programmers like the idea  of  nesting  comments, since it allows 
you to comment out code during debugging.  The  code  I've  given 
here won't allow that and, again, neither will Turbo Pascal. 
 
But the fix is incredibly easy.  All  we  need  to  do is to make 
SkipComment recursive: 
 
 
{--------------------------------------------------------------} 
{ Skip A Comment Field } 
 
procedure SkipComment; 
begin 
   while Look <> '}' do begin 
      GetChar; 
      if Look = '{' then SkipComment; 
   end; 
   GetChar; 
end; 
{--------------------------------------------------------------} 
 
 
That does it.  As  sophisticated a comment-handler as you'll ever 
need. 
 
 
MULTI-CHARACTER DELIMITERS 
 
That's all well and  good  for cases where a comment is delimited 
by single  characters,  but  what  about  the  cases such as C or 
standard Pascal, where two  characters  are  required?  Well, the 
principles are still the same, but we have to change our approach 
quite a bit.  I'm sure it won't surprise you to learn that things 
get harder in this case. 
 
For the multi-character situation, the  easiest thing to do is to 
intercept the left delimiter  back  at the GetChar stage.  We can 
"tokenize" it right there, replacing it by a single character. 
 
Let's assume we're using the C delimiters '/*' and '*/'.   First, 
we  need  to  go back to the "GetCharX' approach.  In yet another 



copy of your compiler, rename  GetChar to GetCharX and then enter 
the following new procedure GetChar: 
 
 
{--------------------------------------------------------------} 
{ Read New Character.  Intercept '/*' } 
 
procedure GetChar; 
begin 
   if TempChar <> ' ' then begin 
      Look := TempChar; 
      TempChar := ' '; 
      end 
   else begin 
      GetCharX; 
      if Look = '/' then begin 
         Read(TempChar); 
         if TempChar = '*' then begin 
            Look := '{'; 
            TempChar := ' '; 
         end; 
      end; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
As you can see, what this procedure does is  to  intercept  every 
occurrence of '/'.  It then examines the NEXT  character  in  the 
stream.  If the character  is  a  '*',  then  we  have  found the 
beginning  of  a  comment,  and  GetChar  will  return  a  single 
character replacement for it.   (For  simplicity,  I'm  using the 
same '{' character  as I did for Pascal.  If you were writing a C 
compiler, you'd no doubt want to pick some other character that's 
not  used  elsewhere  in C.  Pick anything you like ... even $FF, 
anything that's unique.) 
 
If the character  following  the  '/'  is NOT a '*', then GetChar 
tucks it away in the new global TempChar, and  returns  the  '/'. 
 
Note that you need to declare this new variable and initialize it 
to ' '.  I like to do  things  like  that  using the Turbo "typed 
constant" construct: 
 
 
     const TempChar: char = ' '; 
 
 
Now we need a new version of SkipComment: 
 
 
{--------------------------------------------------------------} 
{ Skip A Comment Field } 
 
procedure SkipComment; 
begin 
   repeat 



      repeat 
         GetCharX; 
      until Look = '*'; 
      GetCharX; 
   until Look = '/'; 
   GetChar; 
end; 
{--------------------------------------------------------------} 
 
 
A  few  things  to  note:  first  of  all, function  IsWhite  and 
procedure SkipWhite  don't  need  to  be  changed,  since GetChar 
returns the '{' token.  If you change that token  character, then 
of  course you also need to change the  character  in  those  two 
routines. 
 
Second, note that  SkipComment  doesn't call GetChar in its loop, 
but  GetCharX.    That  means   that  the  trailing  '/'  is  not 
intercepted and  is seen by SkipComment.  Third, although GetChar 
is the  procedure  doing  the  work,  we  can still deal with the 
comment  characters  embedded  in  a  quoted  string,  by calling 
GetCharX  instead  of  GetChar  while  we're  within  the string. 
Finally,  note  that  we can again provide for nested comments by 
adding a single statement to SkipComment, just as we did before. 
 
 
ONE-SIDED COMMENTS 
 
So far I've shown you  how  to  deal  with  any  kind  of comment 
delimited on the left and the  right.   That only leaves the one- 
sided comments like those in assembler language or  in  Ada, that 
are terminated by the end of the line.  In a  way,  that  case is 
easier.   The only procedure that would need  to  be  changed  is 
SkipComment, which must now terminate at the newline characters: 
 
 
{--------------------------------------------------------------} 
{ Skip A Comment Field } 
 
procedure SkipComment; 
begin 
   repeat 
      GetCharX; 
   until Look = CR; 
   GetChar; 
end; 
{--------------------------------------------------------------} 
 
 
If the leading character is  a  single  one,  as  in  the  ';' of 
assembly language, then we're essentially done.  If  it's  a two- 
character token, as in the '--'  of  Ada, we need only modify the 
tests  within  GetChar.   Either way, it's an easier problem than 
the balanced case. 
 
 
CONCLUSION 



 
At this point we now have the ability to deal with  both comments 
and semicolons, as well as other kinds of syntactic sugar.   I've 
shown  you several ways to deal with  each,  depending  upon  the 
convention  desired.    The  only  issue left is: which of  these 
conventions should we use in KISS/TINY? 
 
For the reasons that I've given as we went  along,  I'm  choosing 
the following: 
 
 
 (1) Semicolons are TERMINATORS, not separators 
 
 (2) Semicolons are OPTIONAL 
 
 (3) Comments are delimited by curly braces 
 
 (4) Comments MAY be nested 
 
 
Put the code corresponding to these cases into your copy of TINY. 
You now have TINY Version 1.2. 
 
Now that we  have  disposed  of  these  sideline  issues,  we can 
finally get back into the mainstream.  In  the  next installment, 
we'll talk  about procedures and parameter passing, and we'll add 
these important features to TINY.  See you then. 
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INTRODUCTION 
 
At last we get to the good part! 
 
At  this point we've studied almost all  the  basic  features  of 
compilers  and  parsing.    We  have  learned  how  to  translate 
arithmetic expressions, Boolean expressions, control  constructs, 
data  declarations,  and  I/O  statements.    We  have defined  a 
language, TINY 1.3, that embodies all these features, and we have 
written  a  rudimentary  compiler that can translate  them.    By 
adding some file I/O we could indeed have a working compiler that 
could produce executable object files  from  programs  written in 
TINY.  With such a compiler, we could write simple  programs that 
could read integer data, perform calculations with it, and output 
the results. 
 
That's nice, but what we have is still only a  toy  language.  We 
can't read or write even a single character of text, and we still 
don't have procedures. 
 
It's  the  features  to  be  discussed  in  the  next  couple  of 
installments  that  separate  the men from the toys, so to speak. 
"Real" languages have more than one data type,  and  they support 
procedure calls.  More than any others, it's  these  two features 
that give a language much of its character and personality.  Once 
we  have  provided   for   them,  our  languages,  TINY  and  its 
successors, will cease  to  become  toys  and  will  take  on the 



character  of  real  languages,  suitable for serious programming 
jobs. 
 
For several installments now, I've been promising you sessions on 
these  two  important  subjects.  Each time, other issues came up 
that required me to  digress  and deal with them.  Finally, we've 
been able to put all those issues to rest and can get on with the 
mainstream  of  things.    In   this   installment,   I'll  cover 
procedures.  Next time, we'll talk about the basic data types. 
 
 
ONE LAST DIGRESSION 
 
This has  been an extraordinarily difficult installment for me to 
write.  The reason has nothing to do with the subject  itself ... 
I've  known  what I wanted to say for some time, and  in  fact  I 
presented  most  of  this at Software Development  '89,  back  in 
February.  It has more to do with the approach.  Let me explain. 
 
When I first  began  this  series,  I  told you that we would use 
several "tricks" to  make  things  easy,  and to let us learn the 
concepts without getting too bogged down in the  details.   Among 
these tricks was the idea of looking at individual  pieces  of  a 
compiler at  a time, i.e. performing experiments using the Cradle 
as a base.  When we studied expressions, for  example,  we  dealt 
with only that part of compiler theory.  When we  studied control 
structures,  we wrote a different program,  still  based  on  the 
Cradle, to do that part. We only incorporated these concepts into 
a complete language fairly recently. These techniques have served 
us very well indeed, and led us to the development of  a compiler 
for TINY version 1.3. 
 
When  I  first  began this session, I tried to build upon what we 
had already done, and  just  add the new features to the existing 
compiler.  That turned out to be a little awkward and  tricky ... 
much too much to suit me. 
 
I finally figured out why.  In this series of experiments,  I had 
abandoned the very useful techniques that had allowed  us  to get 
here, and  without  meaning  to  I  had  switched over into a new 
method of  working, that involved incremental changes to the full 
TINY compiler. 
 
You  need  to  understand that what we are doing here is a little 
unique.  There have been a number of articles, such as  the Small 
C articles by Cain and Hendrix, that presented finished compilers 
for one language or another.  This is different.  In  this series 
of tutorials, you are  watching  me  design  and implement both a 
language and a compiler, in real time. 
 
In the experiments that I've been doing in  preparation  for this 
article,  I  was  trying to inject  the  changes  into  the  TINY 
compiler  in such a way that, at every step, we still had a real, 
working  compiler.     In   other  words,  I  was  attempting  an 
incremental enhancement of the language and  its  compiler, while 
at the same time explaining to you what I was doing. 
 



That's a tough act to pull off!  I finally  realized  that it was 
dumb to try.    Having  gotten  this  far using the idea of small 
experiments   based   on   single-character  tokens  and  simple, 
special-purpose  programs,  I  had  abandoned  them  in  favor of 
working with the full compiler.  It wasn't working. 
 
So we're going to go back to our  roots,  so  to  speak.  In this 
installment and the next, I'll be  using  single-character tokens 
again as we study the concepts of procedures,  unfettered  by the 
other baggage  that we have accumulated in the previous sessions. 
As a  matter  of  fact,  I won't even attempt, at the end of this 
session, to merge the constructs into the TINY  compiler.   We'll 
save that for later. 
 
After all this time, you don't need more buildup  than  that,  so 
let's waste no more time and dive right in. 
 
 
THE BASICS 
 
All modern  CPU's provide direct support for procedure calls, and 
the  68000  is no exception.  For the 68000, the call  is  a  BSR 
(PC-relative version) or JSR, and the return is RTS.  All we have 
to do is to arrange for  the  compiler to issue these commands at 
the proper place. 
 
Actually, there are really THREE things we have to address.   One 
of  them  is  the  call/return  mechanism.    The second  is  the 
mechanism  for  DEFINING  the procedure in the first place.  And, 
finally, there is the issue of passing parameters  to  the called 
procedure.  None of these things are really  very  difficult, and 
we can of course borrow heavily on what people have done in other 
languages ... there's no need to reinvent the wheel here.  Of the 
three issues, that of parameter passing will occupy  most  of our 
attention, simply because there are so many options available. 
 
 
A BASIS FOR EXPERIMENTS 
 
As always, we will need some software to  serve  as  a  basis for 
what  we are doing.  We don't need the full TINY compiler, but we 
do need enough of a program so that some of the  other constructs 
are present.  Specifically, we need at least to be able to handle 
statements of some sort, and data declarations. 
 
The program shown below is that basis.  It's a vestigial  form of 
TINY, with single-character tokens.   It  has  data declarations, 
but only in their simplest form ... no lists or initializers.  It 
has assignment statements, but only of the kind 
 
     <ident> = <ident> 
 
In  other  words,  the only legal expression is a single variable 
name.    There  are no control  constructs  ...  the  only  legal 
statement is the assignment. 
 
Most of the program  is  just the standard Cradle routines.  I've 



shown the whole thing here, just to make sure we're  all starting 
from the same point: 
 
 
{--------------------------------------------------------------} 
program Calls; 
 
{--------------------------------------------------------------} 
{ Constant Declarations } 
 
const TAB = ^I; 
      CR  = ^M; 
      LF  = ^J; 
 
{--------------------------------------------------------------} 
{ Variable Declarations } 
 
var Look: char;              { Lookahead Character } 
 
var ST: Array['A'..'Z'] of char; 
 
 
{--------------------------------------------------------------} 
{ Read New Character From Input Stream } 
 
procedure GetChar; 
begin 
   Read(Look); 
end; 
 
{--------------------------------------------------------------} 
{ Report an Error } 
 
procedure Error(s: string); 
begin 
   WriteLn; 
   WriteLn(^G, 'Error: ', s, '.'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Report Error and Halt } 
 
procedure Abort(s: string); 
begin 
   Error(s); 
   Halt; 
end; 
 
 
{--------------------------------------------------------------} 
{ Report What Was Expected } 
 
procedure Expected(s: string); 
begin 
   Abort(s + ' Expected'); 
end; 



 
 
{--------------------------------------------------------------} 
{ Report an Undefined Identifier } 
 
procedure Undefined(n: string); 
begin 
   Abort('Undefined Identifier ' + n); 
end; 
 
 
{--------------------------------------------------------------} 
{ Report an Duplicate Identifier } 
 
procedure Duplicate(n: string); 
begin 
     Abort('Duplicate Identifier ' + n); 
end; 
 
 
{--------------------------------------------------------------} 
{ Get Type of Symbol } 
 
function TypeOf(n: char): char; 
begin 
     TypeOf := ST[n]; 
end; 
 
 
{--------------------------------------------------------------} 
{ Look for Symbol in Table } 
 
function InTable(n: char): Boolean; 
begin 
   InTable := ST[n] <> ' '; 
end; 
 
 
{--------------------------------------------------------------} 
{ Add a New Symbol to Table } 
 
procedure AddEntry(Name, T: char); 
begin 
     if Intable(Name) then Duplicate(Name); 
     ST[Name] := T; 
end; 
 
 
{--------------------------------------------------------------} 
{ Check an Entry to Make Sure It's a Variable } 
 
procedure CheckVar(Name: char); 
begin 
     if not InTable(Name) then Undefined(Name); 
     if  TypeOf(Name)  <>  'v'  then    Abort(Name  +  ' is not a 
variable'); 
end; 



 
 
{--------------------------------------------------------------} 
{ Recognize an Alpha Character } 
 
function IsAlpha(c: char): boolean; 
begin 
   IsAlpha := upcase(c) in ['A'..'Z']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Decimal Digit } 
 
function IsDigit(c: char): boolean; 
begin 
   IsDigit := c in ['0'..'9']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an AlphaNumeric Character } 
 
function IsAlNum(c: char): boolean; 
begin 
   IsAlNum := IsAlpha(c) or IsDigit(c); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an Addop } 
 
function IsAddop(c: char): boolean; 
begin 
   IsAddop := c in ['+', '-']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Mulop } 
 
function IsMulop(c: char): boolean; 
begin 
   IsMulop := c in ['*', '/']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Boolean Orop } 
 
function IsOrop(c: char): boolean; 
begin 
   IsOrop := c in ['|', '~']; 
end; 
 
 
{--------------------------------------------------------------} 



{ Recognize a Relop } 
 
function IsRelop(c: char): boolean; 
begin 
   IsRelop := c in ['=', '#', '<', '>']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize White Space } 
 
function IsWhite(c: char): boolean; 
begin 
   IsWhite := c in [' ', TAB]; 
end; 
 
 
{--------------------------------------------------------------} 
{ Skip Over Leading White Space } 
 
procedure SkipWhite; 
begin 
   while IsWhite(Look) do 
      GetChar; 
end; 
 
 
{--------------------------------------------------------------} 
{ Skip Over an End-of-Line } 
 
procedure Fin; 
begin 
   if Look = CR then begin 
      GetChar; 
      if Look = LF then 
         GetChar; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Match a Specific Input Character } 
 
procedure Match(x: char); 
begin 
   if Look = x then GetChar 
     else Expected('''' + x + ''''); 
     SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
function GetName: char; 
begin 
   if not IsAlpha(Look) then Expected('Name'); 



   GetName := UpCase(Look); 
     GetChar; 
     SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNum: char; 
begin 
   if not IsDigit(Look) then Expected('Integer'); 
   GetNum := Look; 
     GetChar; 
     SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Output a String with Tab } 
 
procedure Emit(s: string); 
begin 
   Write(TAB, s); 
end; 
 
 
{--------------------------------------------------------------} 
{ Output a String with Tab and CRLF } 
 
procedure EmitLn(s: string); 
begin 
   Emit(s); 
   WriteLn; 
end; 
 
 
{--------------------------------------------------------------} 
{ Post a Label To Output } 
 
procedure PostLabel(L: string); 
begin 
   WriteLn(L, ':'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Load a Variable to the Primary Register } 
 
procedure LoadVar(Name: char); 
begin 
     CheckVar(Name); 
     EmitLn('MOVE ' + Name + '(PC),D0'); 
end; 
 
 
{--------------------------------------------------------------} 



{ Store the Primary Register } 
 
procedure StoreVar(Name: char); 
begin 
     CheckVar(Name); 
     EmitLn('LEA ' + Name + '(PC),A0'); 
   EmitLn('MOVE D0,(A0)') 
end; 
 
 
{--------------------------------------------------------------} 
{ Initialize } 
 
procedure Init; 
var i: char; 
begin 
     GetChar; 
     SkipWhite; 
     for i := 'A' to 'Z' do 
          ST[i] := ' '; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Expression } 
{ Vestigial Version } 
 
procedure Expression; 
begin 
     LoadVar(GetName); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment; 
var Name: char; 
begin 
     Name := GetName; 
     Match('='); 
     Expression; 
     StoreVar(Name); 
end; 
 
 
{--------------------------------------------------------------} 
 
                              
 
 
 
 
 
 
{ Parse and Translate a Block of Statements } 
 



procedure DoBlock; 
begin 
     while not(Look in ['e']) do begin 
          Assignment; 
          Fin; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Begin-Block } 
 
procedure BeginBlock; 
begin 
     Match('b'); 
     Fin; 
     DoBlock; 
     Match('e'); 
     Fin; 
end; 
 
 
{--------------------------------------------------------------} 
{ Allocate Storage for a Variable } 
 
procedure Alloc(N: char); 
begin 
     if InTable(N) then Duplicate(N); 
   ST[N] := 'v'; 
     WriteLn(N, ':', TAB, 'DC 0'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Data Declaration } 
 
procedure Decl; 
var Name: char; 
begin 
   Match('v'); 
     Alloc(GetName); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate Global Declarations } 
 
procedure TopDecls; 
begin 
     while Look <> 'b' do begin 
      case Look of 
        'v': Decl; 
      else Abort('Unrecognized Keyword ' + Look); 
          end; 
          Fin; 
     end; 
end; 



 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
     Init; 
     TopDecls; 
     BeginBlock; 
end. 
{--------------------------------------------------------------} 
 
 
Note  that we DO have a symbol table, and there is logic to check 
a variable name to make sure it's a legal one.    It's also worth 
noting that I  have  included  the  code  you've  seen  before to 
provide for white space  and  newlines.    Finally, note that the 
main program is delimited, as usual, by BEGIN-END brackets. 
 
Once you've copied  the  program  to  Turbo, the first step is to 
compile it and make sure it  works.   Give it a few declarations, 
and then a begin-block.  Try something like: 
 
 
     va             (for VAR A) 
     vb             (for VAR B) 
     vc             (for VAR C) 
     b              (for BEGIN) 
     a=b 
     b=c 
     e.             (for END.) 
 
 
As usual, you should also make some deliberate errors, and verify 
that the program catches them correctly. 
 
 
DECLARING A PROCEDURE 
 
If you're satisfied that our little program works, then it's time 
to  deal  with  the  procedures.  Since we haven't  talked  about 
                              
 
 
 
 
 
 
parameters yet, we'll begin by considering  only  procedures that 
have no parameter lists. 
 
As a start, let's consider a simple program with a procedure, and 
think about the code we'd like to see generated for it: 
 
 
     PROGRAM FOO; 
     . 



     . 
     PROCEDURE BAR;                     BAR: 
     BEGIN                                   . 
     .                                       . 
     .                                       . 
     END;                                    RTS 
 
     BEGIN { MAIN PROGRAM }             MAIN: 
     .                                       . 
     .                                       . 
     FOO;                                    BSR BAR 
     .                                       . 
     .                                       . 
     END.                                    END MAIN 
 
 
Here I've shown  the  high-order language constructs on the left, 
and the desired assembler code on the right.  The first  thing to 
notice  is that we certainly don't have  much  code  to  generate 
here!  For  the  great  bulk  of  both the procedure and the main 
program,  our existing constructs take care of  the  code  to  be 
generated. 
 
The key to dealing with the body of the procedure is to recognize 
that  although a procedure may be quite  long,  declaring  it  is 
really no different than  declaring  a  variable.   It's just one 
more kind of declaration.  We can write the BNF: 
 
 
     <declaration> ::= <data decl> | <procedure> 
 
 
This means that it should be easy to modify TopDecl to  deal with 
procedures.  What about the syntax of a procedure?   Well, here's 
a suggested syntax, which is essentially that of Pascal: 
 
 
     <procedure> ::= PROCEDURE <ident> <begin-block> 
 
 
There is practically no code generation required, other than that 
generated within the begin-block.    We need only emit a label at 
the beginning of the procedure, and an RTS at the end. 
 
Here's the required code: 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Procedure Declaration } 
 
procedure DoProc; 
var N: char; 
begin 
     Match('p'); 
     N := GetName; 
     Fin; 
     if InTable(N) then Duplicate(N); 
     ST[N] := 'p'; 



     PostLabel(N); 
     BeginBlock; 
     Return; 
end; 
{--------------------------------------------------------------} 
 
 
Note that I've added a new code generation routine, Return, which 
merely emits an RTS instruction.  The creation of that routine is 
"left as an exercise for the student." 
 
To  finish  this  version, add the following line within the Case 
statement in DoBlock: 
 
 
            'p': DoProc; 
 
 
I should mention that  this  structure  for declarations, and the 
BNF that drives it, differs from standard Pascal.  In  the Jensen 
& Wirth  definition of Pascal, variable declarations, in fact ALL 
kinds of declarations,  must  appear in a specific sequence, i.e. 
labels,   constants,  types,  variables,  procedures,  and   main 
program.  To  follow  such  a  scheme, we should separate the two 
declarations, and have code in the main program something like 
 
 
     DoVars; 
     DoProcs; 
     DoMain; 
 
 
However,  most implementations of Pascal, including Turbo,  don't 
require  that  order  and  let  you  freely  mix up  the  various 
declarations,  as  long  as  you  still  don't  try to  refer  to 
something  before  it's  declared.    Although  it  may  be  more 
aesthetically pleasing to declare all the global variables at the 
top of the  program,  it  certainly  doesn't do any HARM to allow 
them to be sprinkled around.   In  fact,  it may do some GOOD, in 
the  sense  that it gives you the  opportunity  to  do  a  little 
rudimentary  information  hiding.     Variables  that  should  be 
accessed only by the main program, for example,  can  be declared 
just before it and will thus be inaccessible by the procedures. 
 
OK, try this new version out.  Note that we  can  declare as many 
procedures as we choose (as long  as  we don't run out of single- 
character names!), and the  labels  and RTS's all come out in the 
right places. 
 
It's  worth  noting  here  that  I  do  _NOT_  allow  for  nested 
procedures.   In TINY, all procedures must  be  declared  at  the 
global level,  the  same  as  in  C.    There  has  been  quite a 
discussion about this point in  the  Computer  Language  Forum of 
CompuServe.  It turns out that there is a significant  penalty in 
complexity that must be paid for the luxury of nested procedures. 
What's  more,  this  penalty gets paid at RUN TIME, because extra 
code must be added and executed every time a procedure is called. 



I also happen to believe that nesting is not a good  idea, simply 
on the grounds that I have seen too many abuses of the feature. 
Before going on to the next step, it's also worth noting that the 
"main program" as it stands  is incomplete, since it doesn't have 
the label and END statement.  Let's fix that little oversight: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Main Program } 
 
procedure DoMain; 
begin 
     Match('b'); 
     Fin; 
     Prolog; 
     DoBlock; 
     Epilog; 
end; 
{--------------------------------------------------------------} 
. 
. 
. 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
     Init; 
     TopDecls; 
     DoMain; 
end. 
{--------------------------------------------------------------} 
 
 
Note  that  DoProc  and DoMain are not quite symmetrical.  DoProc 
uses a call to BeginBlock, whereas DoMain cannot.  That's because 
a procedure  is signaled by the keyword PROCEDURE (abbreviated by 
a 'p' here), while the main program gets no  keyword  other  than 
the BEGIN itself. 
 
And _THAT_ brings up an interesting question: WHY? 
 
If  we  look  at the structure of C programs, we  find  that  all 
functions are treated just  alike,  except  that the main program 
happens to be identified by its name, "main."  Since  C functions 
can appear in any order, the main program can also be anywhere in 
the compilation unit. 
 
In Pascal, on the other hand, all variables  and  procedures must 
be declared before they're  used,  which  means  that there is no 
point putting anything after the  main program ... it could never 
be accessed.  The "main program" is not identified at  all, other 
than  being that part of the code that  comes  after  the  global 
BEGIN.  In other words, if it ain't anything else, it must be the 
main program. 
 
This  causes  no  small  amount   of   confusion   for  beginning 
programmers, and for big Pascal programs sometimes it's difficult 



to  find the beginning of the main program at all.  This leads to 
conventions such as identifying it in comments: 
 
 
     BEGIN { of MAIN } 
 
 
This  has  always  seemed  to  me to be a bit of a kludge.    The 
question comes up:    Why  should  the main program be treated so 
much  differently  than  a  procedure?   In fact, now that  we've 
recognized that  procedure declarations are just that ... part of 
the global declarations ... isn't  the main program just one more 
declaration, also? 
 
The answer is yes, and by  treating  it that way, we can simplify 
the code and make  it  considerably  more  orthogonal.  I propose 
that  we  use  an explicit keyword, PROGRAM, to identify the main 
program (Note that this  means  that we can't start the file with 
it, as in Pascal).  In this case, our BNF becomes: 
 
 
     <declaration> ::= <data decl> | <procedure> | <main program> 
 
 
     <procedure> ::= PROCEDURE <ident> <begin-block> 
 
 
     <main program> ::= PROGRAM <ident> <begin-block> 
 
 
The code  also  looks  much  better,  at  least in the sense that 
DoMain and DoProc look more alike: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Main Program } 
 
procedure DoMain; 
var N: char; 
begin 
     Match('P'); 
     N := GetName; 
     Fin; 
     if InTable(N) then Duplicate(N); 
     Prolog; 
     BeginBlock; 
end; 
{--------------------------------------------------------------} 
. 
. 
. 
{--------------------------------------------------------------} 
{ Parse and Translate Global Declarations } 
 
procedure TopDecls; 
begin 
     while Look <> '.' do begin 



      case Look of 
            'v': Decl; 
            'p': DoProc; 
            'P': DoMain; 
          else Abort('Unrecognized Keyword ' + Look); 
          end; 
          Fin; 
     end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
     Init; 
     TopDecls; 
     Epilog; 
end. 
{--------------------------------------------------------------} 
 
 
Since the declaration of the main program is now within  the loop 
of  TopDecl,  that  does  present  some difficulties.  How do  we 
ensure that it's  the last thing in the file?  And how do we ever 
exit  from  the  loop?  My answer for the second question, as you 
can see, was to bring back our old friend the  period.   Once the 
parser sees that, we're done. 
 
To  answer  the first question:  it  depends  on  how  far  we're 
willing to go to  protect  the programmer from dumb mistakes.  In 
the code that I've shown,  there's nothing to keep the programmer 
from adding code after  the  main  program  ... even another main 
program.   The code will just not be  accessible.    However,  we 
COULD access it via a FORWARD statement, which we'll be providing 
later. As a  matter  of fact, many assembler language programmers 
like to use  the  area  just  after the program to declare large, 
uninitialized data blocks, so there may indeed be  some  value in 
not  requiring the main program to be last.  We'll leave it as it 
is. 
 
If we decide  that  we  should  give the programmer a little more 
help than that, it's pretty easy to add some logic to kick us out 
of the loop  once  the  main  program  has been processed.  Or we 
could  at least flag an error if someone  tries  to  include  two 
mains. 
 
 
CALLING THE PROCEDURE 
 
If you're satisfied that  things  are  working, let's address the 
second half of the equation ... the call. 
 
Consider the BNF for a procedure call: 
 
 
     <proc_call> ::= <identifier> 



 
 
for an assignment statement, on the other hand, the BNF is: 
 
 
     <assignment> ::= <identifier> '=' <expression> 
 
 
At this point we seem to  have  a problem. The two BNF statements 
both begin on the  right-hand  side  with the token <identifier>. 
How are we supposed to know, when we see the  identifier, whether 
we have a procedure call or an assignment statement?   This looks 
like a case where our  parser ceases being predictive, and indeed 
that's exactly the case.  However, it turns  out  to  be  an easy 
problem to fix, since all we have to do is to look at the type of 
the identifier, as  recorded  in  the  symbol  table.    As we've 
discovered before, a  minor  local  violation  of  the predictive 
parsing rule can be easily handled as a special case. 
 
Here's how to do it: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment(Name: char); 
begin 
     Match('='); 
     Expression; 
     StoreVar(Name); 
end; 
 
 
{--------------------------------------------------------------} 
{ Decide if a Statement is an Assignment or Procedure Call } 
 
procedure AssignOrProc; 
var Name: char; 
begin 
     Name := GetName; 
     case TypeOf(Name) of 
          ' ': Undefined(Name); 
          'v': Assignment(Name); 
          'p': CallProc(Name); 
          else Abort('Identifier ' + Name + 
                                   ' Cannot Be Used Here'); 
     end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Block of Statements } 
 
procedure DoBlock; 
begin 
     while not(Look in ['e']) do begin 
          AssignOrProc; 



          Fin; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
As you can see, procedure Block now calls AssignOrProc instead of 
Assignment.  The function of this new procedure is to simply read 
the identifier,  determine  its  type,  and  then  call whichever 
procedure  is  appropriate  for  that  type.  Since the name  has 
already been read,  we  must  pass  it to the two procedures, and 
modify Assignment to match.   Procedure CallProc is a simple code 
generation routine: 
 
 
{--------------------------------------------------------------} 
{ Call a Procedure } 
 
procedure CallProc(N: char); 
begin 
     EmitLn('BSR ' + N); 
end; 
{--------------------------------------------------------------} 
 
 
Well,  at  this  point  we  have  a  compiler  that can deal with 
procedures.    It's  worth  noting  that   procedures   can  call 
procedures to any depth.  So even though we  don't  allow  nested 
DECLARATIONS, there  is certainly nothing to keep us from nesting 
CALLS, just as  we  would  expect  to  do in any language.  We're 
getting there, and it wasn't too hard, was it? 
 
Of course, so far we can  only  deal with procedures that have no 
parameters.    The  procedures  can  only operate on  the  global 
variables  by  their  global names.  So at this point we have the 
equivalent of BASIC's GOSUB construct.  Not too bad ... after all 
lots of serious programs were written using GOSUBs, but we can do 
better, and we will.  That's the next step. 
 
 
PASSING PARAMETERS 
 
Again, we all know the basic idea of passed parameters, but let's 
review them just to be safe. 
 
In general the procedure is given a parameter list, for example 
 
     PROCEDURE FOO(X, Y, Z) 
 
In  the declaration of a procedure,  the  parameters  are  called 
formal  parameters, and may be referred to in  the  body  of  the 
procedure  by  those  names.    The  names  used for  the  formal 
parameters  are  really  arbitrary.    Only  the  position really 
counts.  In  the  example  above,  the name 'X' simply means "the 
first parameter" wherever it is used. 
 
When a procedure is called,  the "actual parameters" passed to it 



are associated  with  the  formal  parameters,  on  a one-for-one 
basis. 
 
The BNF for the syntax looks something like this: 
 
 
     <procedure> ::= PROCEDURE <ident> 
                    '(' <param-list> ')' <begin-block> 
 
 
     <param_list> ::= <parameter> ( ',' <parameter> )* | null 
 
Similarly, the procedure call looks like: 
 
 
     <proc call> ::= <ident> '(' <param-list> ')' 
 
 
Note that there is already an implicit decision  built  into this 
syntax.  Some languages, such as Pascal and Ada, permit parameter 
lists to be  optional.    If  there are no parameters, you simply 
leave off the parens  completely.    Other  languages, like C and 
Modula 2, require the parens even if the list is empty.  Clearly, 
the example we just finished corresponds to the  former  point of 
view.  But to tell the truth I prefer the latter.  For procedures 
alone, the  decision would seem to favor the "listless" approach. 
The statement 
 
 
     Initialize; , 
 
 
standing alone, can only  mean  a procedure call.  In the parsers 
we've  been  writing,  we've  made  heavy  use  of  parameterless 
procedures, and it would seem a  shame  to have to write an empty 
pair of parens for each case. 
 
But later on we're going to  be  using functions, too.  And since 
functions  can  appear  in  the  same  places  as  simple  scalar 
identifiers, you can't tell the  difference between the two.  You 
have to go  back  to  the  declarations  to find out.  Some folks 
consider  this to be an advantage.  Their  argument  is  that  an 
identifier gets replaced by a value, and what do you care whether 
it's done by  substitution  or  by  a function?  But we sometimes 
_DO_ care, because the function may be quite time-consuming.  If, 
by  writing  a  simple identifier into a given expression, we can 
incur a heavy run-time penalty, it seems to  me  we  ought  to be 
made aware of it. 
 
Anyway,  Niklaus  Wirth  designed both Pascal and Modula 2.  I'll 
give him the benefit of the doubt and assume that  he  had a good 
reason for changing the rules the second time around! 
 
Needless to say, it's an easy thing to accomodate either point of 
view as we design a language, so this one is strictly a matter of 
personal preference.  Do it whichever way you like best. 
 



Before we go any further, let's alter the translator to  handle a 
(possibly empty) parameter list.  For now we  won't  generate any 
extra code ... just parse the syntax.  The  code  for  processing 
the declaration has very  much  the  same  form we've seen before 
when dealing with VAR-lists: 
 
 
{--------------------------------------------------------------} 
{ Process the Formal Parameter List of a Procedure } 
 
procedure FormalList; 
begin 
     Match('('); 
     if Look <> ')' then begin 
          FormalParam; 
          while Look = ',' do begin 
               Match(','); 
               FormalParam; 
          end; 
     end; 
     Match(')'); 
end; 
{--------------------------------------------------------------} 
 
 
Procedure DoProc needs to have a line added to call FormalList: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Procedure Declaration } 
 
procedure DoProc; 
var N: char; 
begin 
     Match('p'); 
     N := GetName; 
     FormalList; 
     Fin; 
     if InTable(N) then Duplicate(N); 
     ST[N] := 'p'; 
     PostLabel(N); 
     BeginBlock; 
     Return; 
end; 
{--------------------------------------------------------------} 
 
 
For now, the code for FormalParam is just a dummy one that simply 
skips the parameter name: 
 
 
{--------------------------------------------------------------} 
{ Process a Formal Parameter } 
 
procedure FormalParam; 
var Name:  char; 
begin 



     Name := GetName; 
end; 
{--------------------------------------------------------------} 
 
 
For  the actual procedure call, there must  be  similar  code  to 
process the actual parameter list: 
 
 
{--------------------------------------------------------------} 
{ Process an Actual Parameter } 
 
procedure Param; 
var Name:  char; 
begin 
     Name := GetName; 
end; 
 
 
{--------------------------------------------------------------} 
{ Process the Parameter List for a Procedure  Call } 
 
procedure ParamList; 
begin 
     Match('('); 
     if Look <> ')' then begin 
          Param; 
          while Look = ',' do begin 
               Match(','); 
               Param; 
          end; 
     end; 
     Match(')'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Process a Procedure Call } 
 
procedure CallProc(Name: char); 
begin 
     ParamList; 
     Call(Name); 
end; 
{--------------------------------------------------------------} 
 
 
Note  here  that  CallProc  is  no  longer  just  a  simple  code 
generation  routine.  It has some structure to  it.    To  handle 
this, I've renamed the code  generation routine to just Call, and 
called it from within CallProc. 
 
OK, if you'll add all this code to  your  translator  and  try it 
out, you'll find that you can indeed parse the syntax properly. 
I'll note in  passing  that  there  is _NO_ checking to make sure 
that  the  number  (and,  later,  types)  of  formal  and  actual 
parameters match up.  In a production compiler, we must of course 



do  this.  We'll ignore the issue now if for no other reason than 
that the structure of our  symbol table doesn't currently give us 
a place to store the necessary information.  Later on, we'll have 
a place for that data and we can deal with the issue then. 
 
 
THE SEMANTICS OF PARAMETERS 
 
So  far we've dealt with the SYNTAX  of  parameter  passing,  and 
we've got the parsing mechanisms in place to handle it.  Next, we 
have to look at the SEMANTICS, i.e., the actions to be taken when 
we encounter parameters. This brings  us  square  up  against the 
issue of the different ways parameters can be passed. 
 
There is more than one way to pass a parameter, and the way we do 
it can have a  profound  effect on the character of the language. 
So  this is another of those areas where I can't just give you my 
solution.  Rather, it's important that we spend some time looking 
at the  alternatives  so  that  you  can  go another route if you 
choose to. 
 
There are two main ways parameters are passed: 
 
     o By value 
     o By reference (address) 
 
The differences are best seen in the light of a little history. 
 
The old FORTRAN compilers passed all parameters by reference.  In 
other  words, what was actually passed was  the  address  of  the 
parameter.  This meant  that  the  called  subroutine was free to 
either read or  write  that  parameter,  as often as it chose to, 
just  as though it were a global variable.    This  was  actually 
quite an efficient  way  to  do  things, and it was pretty simple 
since  the  same  mechanism  was  used  in  all cases,  with  one 
exception that I'll get to shortly. 
 
There were problems, though.  Many people felt  that  this method 
created entirely too much coupling between the  called subroutine 
and  its  caller.    In  effect, it gave the subroutine  complete 
access to all variables that appeared in the parameter list. 
 
Many  times,  we  didn't want to actually change a parameter, but 
only use it as an input.  For example, we  might  pass an element 
count  to a subroutine, and wish we could  then  use  that  count 
within a DO-loop.    To  avoid  changing the value in the calling 
program, we had to make a local copy of the input  parameter, and 
operate only on the  copy.    Some  FORTRAN programmers, in fact, 
made it a practice to copy ALL parameters except those  that were 
to be used as return values.    Needless to say, all this copying 
defeated  a  good  bit  of  the  efficiency  associated with  the 
approach. 
 
There was, however, an even more insidious problem, which was not 
really just the fault of  the "pass by reference" convention, but 
a bad convergence of several implementation decisions. 
 



Suppose we have a subroutine: 
 
 
     SUBROUTINE FOO(X, Y, N) 
 
 
where N is some kind of  input  count  or flag.  Many times, we'd 
like  to be able to pass a literal or even an expression in place 
of a variable, such as: 
 
 
     CALL FOO(A, B, J + 1) 
 
 
Here the third  parameter  is  not  a  variable, and so it has no 
address.    The  earliest FORTRAN compilers did  not  allow  such 
things, so we had to resort to subterfuges like: 
 
 
     K = J + 1 
     CALL FOO(A, B, K) 
 
 
Here again, there was copying required, and the burden was on the 
programmer to do it.  Not good. 
 
Later  FORTRAN  implementations  got  rid  of  this  by  allowing 
expressions  as  parameters.   What they  did  was  to  assign  a 
compiler-generated variable, store the value of the expression in 
the variable, and then pass the address of the expression. 
 
So far, so good.    Even if the subroutine mistakenly altered the 
anonymous variable, who was to know  or  care?  On the next call, 
it would be recalculated anyway. 
 
The  problem  arose  when  someone  decided to make  things  more 
efficient.  They  reasoned,  rightly enough, that the most common 
kind of "expression" was a single integer value, as in: 
 
 
     CALL FOO(A, B, 4) 
 
 
It seemed inefficient to go to the trouble of "computing" such an 
integer and storing it  in  a temporary variable, just to pass it 
through  the  calling  list.  Since we had to pass the address of 
the  thing  anyway,  it seemed to make lots of sense to just pass 
the address of the literal integer, 4 in the example above. 
 
To make matters  more  interesting, most compilers, then and now, 
identify all literals and store  them  separately  in  a "literal 
pool,"  so that we only have to store one  value  for each unique 
literal.    That  combination  of  design  decisions:     passing 
expressions, optimization for literals as a special case, and use 
of a literal pool, is what led to disaster. 
 
To  see  how  it works, imagine that we call subroutine FOO as in 



the example above, passing  it  a literal 4.  Actually, what gets 
passed  is  the  address of the literal 4, which is stored in the 
literal pool.   This address corresponds to the formal parameter, 
K, in the subroutine itself. 
 
Now suppose that, unbeknownst to the  programmer,  subroutine FOO 
actually modifies K to be, say, -7.  Suddenly, that literal  4 in 
the literal pool  gets  CHANGED,  to  a  -7.  From then on, every 
expression that uses  a  4  and  every subroutine that passes a 4 
will be using the value of -7 instead!  Needless to say, this can 
lead to some  bizarre  and difficult-to-find behavior.  The whole 
thing gave  the concept of pass-by-reference a bad name, although 
as we have seen, it was really a combination of  design decisions 
that led to the problem. 
 
In spite of  the  problem,  the  FORTRAN  approach  had  its good 
points.    Chief  among them is the fact that we  don't  have  to 
support  multiple  mechanisms.    The  same  scheme,  passing the 
address of  the argument, works for EVERY case, including arrays. 
So the size of the compiler can be reduced. 
 
Partly because of the FORTRAN  gotcha, and partly just because of 
the reduced coupling involved, modern languages  like  C, Pascal, 
Ada, and Modula 2 generally pass scalars by value. 
 
This means that the value of the scalar is COPIED into a separate 
value  used only for the call.  Since the value passed is a copy, 
the called procedure can use it as a local variable and modify it 
any way it likes.  The value in the caller will not be changed. 
 
It may seem at first that  this  is a bit inefficient, because of 
the need to copy the parameter.  But remember that we're going to 
have  to  fetch SOME value to pass  anyway,  whether  it  be  the 
parameter  itself  or  an address for it.  Inside the subroutine, 
using  pass-by-value  is  definitely  more  efficient,  since  we 
eliminate one level of indirection.  Finally, we saw earlier that 
with  FORTRAN,  it  was often necessary to make copies within the 
subroutine anyway, so pass-by-value reduces the  number  of local 
variables.  All in all, pass-by-value is better. 
 
Except for one small little detail:  if all parameters are passed 
by value, there is no way for a called to  procedure  to return a 
result to its caller!  The parameter passed is NOT altered in the 
caller,  only  in  the called procedure.  Clearly, that won't get 
the job done. 
 
There  have  been   two   answers  to  this  problem,  which  are 
equivalent.   In Pascal, Wirth provides for VAR parameters, which 
are  passed-by-reference.    What a VAR parameter is, in fact, is 
none other than our old friend the FORTRAN parameter, with  a new 
name and paint job for disguise.  Wirth neatly  gets  around  the 
"changing a literal"  problem  as  well  as  the  "address  of an 
expression" problem, by  the  simple expedient of allowing only a 
variable to be the actual parameter.  In other  words,  it's  the 
same restriction that the earliest FORTRANs imposed. 
 
C does the same thing, but explicitly.  In  C,  _ALL_  parameters 



are passed  by  value.    One  kind  of variable that C supports, 
however, is the pointer.  So  by  passing a pointer by value, you 
in effect pass what it points to by reference.  In some ways this 
works even better yet,  because  even  though  you can change the 
variable  pointed to all you like, you  still  CAN'T  change  the 
pointer itself.  In a function such as strcpy, for example, where 
the  pointers are incremented as the string  is  copied,  we  are 
really only incrementing copies of the pointers, so the values of 
those  pointers in the calling procedure  still  remain  as  they 
were.  To modify a  pointer,  you  must  pass  a  pointer  to the 
pointer. 
 
Since we are simply  performing  experiments  here, we'll look at 
BOTH pass-by-value and pass-by-reference.    That  way,  we'll be 
able to use either one as we need to.  It's worth mentioning that 
it's  going  to  be tough to use the C approach to pointers here, 
since a pointer is a different type and we haven't  studied types 
yet! 
 
 
PASS-BY-VALUE 
 
Let's just try some simple-minded  things and see where they lead 
us.    Let's begin with the pass-by-value  case.    Consider  the 
procedure call: 
 
 
     FOO(X, Y) 
 
 
Almost the only reasonable way to pass the data  is  through  the 
CPU stack.  So the code we'd like  to  see  generated  might look 
something like this: 
 
 
     MOVE X(PC),-(SP)    ; Push X 
     MOVE Y(PC),-(SP)    ; Push Y 
     BSR FOO             ; Call FOO 
 
 
That certainly doesn't seem too complex! 
 
When the BSR is executed, the CPU pushes the return  address onto 
the stack and jumps to FOO.    At  this point the stack will look 
like this: 
 
          . 
          . 
          Value of X (2 bytes) 
          Value of Y (2 bytes) 
  SP -->  Return Address (4 bytes) 
 
 
So the values of  the  parameters  have  addresses that are fixed 
offsets from the stack pointer.  In this  example,  the addresses 
are: 
 



 
     X:  6(SP) 
     Y:  4(SP) 
 
 
Now consider what the called procedure might look like: 
 
 
     PROCEDURE FOO(A, B) 
     BEGIN 
          A = B 
     END 
 
(Remember, the names  of  the formal parameters are arbitrary ... 
only the positions count.) 
 
The desired output code might look like: 
 
 
     FOO: MOVE 4(SP),D0 
          MOVE D0,6(SP) 
          RTS 
 
 
Note that, in order to address the formal parameters, we're going 
to have to know  which  position they have in the parameter list. 
This means some changes to the symbol table stuff.  In  fact, for 
our single-character case it's best to just create  a  new symbol 
table for the formal parameters. 
 
Let's begin by declaring a new table: 
 
 
     var Params: Array['A'..'Z'] of integer; 
 
 
We  also  will  need to keep track of how many parameters a given 
procedure has: 
 
 
     var NumParams: integer; 
 
 
And we need to initialize the new table.  Now, remember  that the 
formal parameter list  will  be different for each procedure that 
we process, so we'll need to initialize that table anew  for each 
procedure.  Here's the initializer: 
 
 
{--------------------------------------------------------------} 
{ Initialize Parameter Table to Null } 
 
procedure ClearParams; 
var i: char; 
begin 
     for i := 'A' to 'Z' do 
          Params[i] := 0; 



     NumParams := 0; 
end; 
{--------------------------------------------------------------} 
 
 
We'll put a call to this procedure in Init, and  also  at the end 
of DoProc: 
 
 
{--------------------------------------------------------------} 
{ Initialize } 
 
procedure Init; 
var i: char; 
begin 
     GetChar; 
     SkipWhite; 
     for i := 'A' to 'Z' do 
          ST[i] := ' '; 
     ClearParams; 
end; 
{--------------------------------------------------------------} 
. 
. 
. 
{--------------------------------------------------------------} 
{ Parse and Translate a Procedure Declaration } 
 
procedure DoProc; 
var N: char; 
begin 
     Match('p'); 
     N := GetName; 
     FormalList; 
     Fin; 
     if InTable(N) then Duplicate(N); 
     ST[N] := 'p'; 
     PostLabel(N); 
     BeginBlock; 
     Return; 
     ClearParams; 
end; 
{--------------------------------------------------------------} 
 
 
Note that the call  within  DoProc ensures that the table will be 
clear when we're in the main program. 
 
 
OK, now  we  need  a  few procedures to work with the table.  The 
next few functions are  essentially  copies  of  InTable, TypeOf, 
etc.: 
 
 
{--------------------------------------------------------------} 
{ Find the Parameter Number } 
 



function ParamNumber(N: char): integer; 
begin 
     ParamNumber := Params[N]; 
end; 
 
 
{--------------------------------------------------------------} 
{ See if an Identifier is a Parameter } 
 
function IsParam(N: char): boolean; 
begin 
     IsParam := Params[N] <> 0; 
end; 
 
 
{--------------------------------------------------------------} 
{ Add a New Parameter to Table } 
 
procedure AddParam(Name: char); 
begin 
     if IsParam(Name) then Duplicate(Name); 
     Inc(NumParams); 
     Params[Name] := NumParams; 
end; 
{--------------------------------------------------------------} 
 
 
Finally, we need some code generation routines: 
 
 
{--------------------------------------------------------------} 
{ Load a Parameter to the Primary Register } 
 
procedure LoadParam(N: integer); 
var Offset: integer; 
begin 
     Offset := 4 + 2 * (NumParams - N); 
     Emit('MOVE '); 
     WriteLn(Offset, '(SP),D0'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Store a Parameter from the Primary Register } 
 
procedure StoreParam(N: integer); 
var Offset: integer; 
begin 
     Offset := 4 + 2 * (NumParams - N); 
     Emit('MOVE D0,'); 
     WriteLn(Offset, '(SP)'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Push The Primary Register to the Stack } 
 



procedure Push; 
begin 
     EmitLn('MOVE D0,-(SP)'); 
end; 
{--------------------------------------------------------------} 
 
 
( The last routine is one we've seen  before,  but  it  wasn't in 
this vestigial version of the program.) 
 
With those preliminaries in place, we're ready to  deal  with the 
semantics of procedures with calling lists (remember, the code to 
deal with the syntax is already in place). 
 
Let's begin by processing a formal parameter.  All we have  to do 
is to add each parameter to the parameter symbol table: 
 
 
{--------------------------------------------------------------} 
{ Process a Formal Parameter } 
 
procedure FormalParam; 
begin 
     AddParam(GetName); 
end; 
{--------------------------------------------------------------} 
 
 
Now, what about dealing with a formal parameter  when  it appears 
in the body of the procedure?  That takes a little more work.  We 
must first determine that it IS a formal parameter.  To  do this, 
I've written a modified version of TypeOf: 
 
 
{--------------------------------------------------------------} 
{ Get Type of Symbol } 
 
function TypeOf(n: char): char; 
begin 
     if IsParam(n) then 
          TypeOf := 'f' 
     else 
          TypeOf := ST[n]; 
end; 
{--------------------------------------------------------------} 
 
 
(Note that, since  TypeOf  now  calls  IsParam, it may need to be 
relocated in your source.) 
 
We also must modify AssignOrProc to deal with this new type: 
 
 
{--------------------------------------------------------------} 
{ Decide if a Statement is an Assignment or Procedure Call } 
 
procedure AssignOrProc; 



var Name: char; 
begin 
     Name := GetName; 
     case TypeOf(Name) of 
          ' ': Undefined(Name); 
          'v', 'f': Assignment(Name); 
          'p': CallProc(Name); 
          else  Abort('Identifier ' + Name +  '  Cannot  Be  Used 
Here'); 
     end; 
end; 
{--------------------------------------------------------------} 
 
 
Finally,  the  code  to process an assignment  statement  and  an 
expression must be extended: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Expression } 
{ Vestigial Version } 
 
procedure Expression; 
var Name: char; 
begin 
     Name := GetName; 
     if IsParam(Name) then 
          LoadParam(ParamNumber(Name)) 
     else 
          LoadVar(Name); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment(Name: char); 
begin 
     Match('='); 
     Expression; 
     if IsParam(Name) then 
          StoreParam(ParamNumber(Name)) 
     else 
          StoreVar(Name); 
end; 
{--------------------------------------------------------------} 
 
 
As you can see, these procedures will treat  every  variable name 
encountered as either a  formal  parameter  or a global variable, 
depending  on  whether  or not it appears in the parameter symbol 
table.   Remember  that  we  are  using  only a vestigial form of 
Expression.  In the  final  program,  the  change shown here will 
have to be added to Factor, not Expression. 
 
The rest is easy.  We need only add the  semantics  to the actual 
procedure call, which we can do with one new line of code: 



 
 
{--------------------------------------------------------------} 
{ Process an Actual Parameter } 
 
procedure Param; 
begin 
     Expression; 
     Push; 
end; 
{--------------------------------------------------------------} 
 
 
That's  it.  Add these changes to your program and give it a try. 
Try declaring one or two procedures, each with a formal parameter 
list.  Then do some assignments, using combinations of global and 
formal  parameters.    You  can  call one procedure  from  within 
another, but you cannot DECLARE a nested procedure.  You can even 
pass formal parameters from one procedure to another.  If  we had 
the  full  syntax  of the language here, you'd also be able to do 
things like read  or  write  formal  parameters  or  use  them in 
complicated expressions. 
 
 
WHAT'S WRONG? 
 
At this point, you might be thinking: Surely there's more to this 
than a few pushes and  pops.    There  must  be  more  to passing 
parameters than this. 
 
You'd  be  right.    As  a  matter  of fact, the code that  we're 
generating here leaves a lot to be desired in several respects. 
 
The most glaring oversight is that it's wrong!   If  you'll  look 
back at the code for a procedure call, you'll see that the caller 
pushes each actual parameter onto the stack before  it  calls the 
procedure.  The  procedure  USES that information, but it doesn't 
change the stack  pointer.    That  means that the stuff is still 
there when we return. SOMEBODY needs to clean up  the  stack,  or 
we'll soon be in very hot water! 
 
Fortunately,  that's  easily fixed.  All we  have  to  do  is  to 
increment the stack pointer when we're finished. 
 
Should  we  do  that  in  the  calling  program,  or  the  called 
procedure?   Some folks let the called  procedure  clean  up  the 
stack,  since  that  requires less code to be generated per call, 
and since the procedure, after  all,  knows  how  many parameters 
it's got.   But  that  means  that  it must do something with the 
return address so as not to lose it. 
 
I prefer letting  the  caller  clean  up, so that the callee need 
only execute a return.  Also, it seems a bit more balanced, since 
the caller is  the  one  who  "messed  up" the stack in the first 
place.  But  THAT  means  that  the caller must remember how many 
items  it  pushed.    To  make  things  easy, I've  modified  the 
procedure  ParamList to be a function  instead  of  a  procedure, 



returning the number of bytes pushed: 
 
 
{--------------------------------------------------------------} 
{ Process the Parameter List for a Procedure  Call } 
 
function ParamList: integer; 
var N: integer; 
begin 
     N := 0; 
     Match('('); 
     if Look <> ')' then begin 
          Param; 
          inc(N); 
          while Look = ',' do begin 
               Match(','); 
               Param; 
               inc(N); 
          end; 
     end; 
     Match(')'); 
     ParamList := 2 * N; 
end; 
{--------------------------------------------------------------} 
 
 
Procedure CallProc then uses this to clean up the stack: 
 
 
{--------------------------------------------------------------} 
{ Process a Procedure Call } 
 
procedure CallProc(Name: char); 
var N: integer; 
begin 
     N := ParamList; 
     Call(Name); 
     CleanStack(N); 
end; 
{--------------------------------------------------------------} 
 
 
Here I've created yet another code generation procedure: 
 
 
{--------------------------------------------------------------} 
{ Adjust the Stack Pointer Upwards by N Bytes } 
 
procedure CleanStack(N: integer); 
begin 
     if N > 0 then begin 
          Emit('ADD #'); 
          WriteLn(N, ',SP'); 
     end; 
end; 
{--------------------------------------------------------------} 
 



 
OK, if you'll add this code to your compiler, I think you'll find 
that the stack is now under control. 
 
The next problem has to do with our way of addressing relative to 
the stack pointer.  That works fine in our simple examples, since 
with our rudimentary  form  of expressions nobody else is messing 
with the stack.  But consider a different example as simple as: 
 
 
     PROCEDURE FOO(A, B) 
     BEGIN 
          A = A + B 
     END 
 
 
The code generated by a simple-minded parser might be: 
 
 
     FOO: MOVE 6(SP),D0       ; Fetch A 
          MOVE D0,-(SP)       ; Push it 
          MOVE 4(SP),D0       ; Fetch B 
          ADD (SP)+,D0        ; Add A 
          MOVE D0,6(SP)       : Store A 
          RTS 
 
 
This  would  be  wrong.  When we push the first argument onto the 
stack, the offsets for the two formal parameters are no  longer 4 
and 6, but are 6 and 8.  So the second fetch would fetch A again, 
not B. 
 
This is not  the  end of the world.  I think you can see that all 
we really have to do is to alter the offset every  time  we  do a 
push, and that in fact is what's done if the  CPU  has no support 
for other methods. 
 
Fortunately,   though,   the   68000   does  have  such  support. 
Recognizing that this CPU  would  be  used  a lot with high-order 
language compilers, Motorola decided to  add  direct  support for 
this kind of thing. 
 
The problem, as you  can  see, is that as the procedure executes, 
the stack  pointer  bounces  up  and  down,  and so it becomes an 
awkward  thing  to  use  as  a  reference  to access  the  formal 
parameters.  The solution is to define some _OTHER_ register, and 
use  it instead.  This register is typically  set  equal  to  the 
original stack pointer, and is called the frame pointer. 
 
The  68000 instruction set LINK lets you  declare  such  a  frame 
pointer, and  sets  it  equal  to  the  stack pointer, all in one 
instruction.  As a matter of  fact,  it does even more than that. 
Since this register may have been in use for  something  else  in 
the calling procedure, LINK also pushes the current value of that 
register onto the stack.  It  can  also  add a value to the stack 
pointer, to make room for local variables. 
 



The complement of LINK is UNLK, which simply  restores  the stack 
pointer and pops the old value back into the register. 
 
Using these two  instructions,  the code for the previous example 
becomes: 
 
 
     FOO: LINK A6,#0 
          MOVE 10(A6),D0      ; Fetch A 
          MOVE D0,-(SP)       ; Push it 
          MOVE 8(A6),D0       ; Fetch B 
          ADD (SP)+,D0        ; Add A 
          MOVE D0,10(A6)      : Store A 
          UNLK A6 
          RTS 
 
 
Fixing the compiler to generate this code is a lot easier than it 
is  to  explain  it.    All we need to do is to modify  the  code 
generation created by DoProc.  Since that makes the code a little 
more than one line, I've created new procedures to deal  with it, 
paralleling the Prolog and Epilog procedures called by DoMain: 
 
 
{--------------------------------------------------------------} 
{ Write the Prolog for a Procedure } 
 
procedure ProcProlog(N: char); 
begin 
     PostLabel(N); 
     EmitLn('LINK A6,#0'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Write the Epilog for a Procedure } 
 
procedure ProcEpilog; 
begin 
     EmitLn('UNLK A6'); 
     EmitLn('RTS'); 
end; 
{--------------------------------------------------------------} 
 
 
Procedure DoProc now just calls these: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Procedure Declaration } 
 
procedure DoProc; 
var N: char; 
begin 
     Match('p'); 
     N := GetName; 
     FormalList; 



     Fin; 
     if InTable(N) then Duplicate(N); 
     ST[N] := 'p'; 
     ProcProlog(N); 
     BeginBlock; 
     ProcEpilog; 
     ClearParams; 
end; 
{--------------------------------------------------------------} 
 
 
Finally, we need to  change  the  references  to SP in procedures 
LoadParam and StoreParam: 
 
 
{--------------------------------------------------------------} 
{ Load a Parameter to the Primary Register } 
 
procedure LoadParam(N: integer); 
var Offset: integer; 
begin 
     Offset := 8 + 2 * (NumParams - N); 
     Emit('MOVE '); 
     WriteLn(Offset, '(A6),D0'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Store a Parameter from the Primary Register } 
 
procedure StoreParam(N: integer); 
var Offset: integer; 
begin 
     Offset := 8 + 2 * (NumParams - N); 
     Emit('MOVE D0,'); 
     WriteLn(Offset, '(A6)'); 
end; 
{--------------------------------------------------------------} 
 
 
(Note that the Offset computation  changes to allow for the extra 
push of A6.) 
 
That's all it takes.  Try this out and see how you like it. 
 
At this point we  are  generating  some  relatively nice code for 
procedures and procedure calls.  Within the limitation that there 
are no local variables  (yet)  and  that  no procedure nesting is 
allowed, this code is just what we need. 
 
There is still just one little small problem remaining: 
 
 
     WE HAVE NO WAY TO RETURN RESULTS TO THE CALLER! 
 
 
But  that,  of course, is not a  limitation  of  the  code  we're 



generating, but  one  inherent  in  the  call-by-value  protocol. 
Notice that we CAN use formal parameters in any  way  inside  the 
procedure.  We  can  calculate  new  values for them, use them as 
loop counters (if we had loops, that is!), etc.   So  the code is 
doing what it's supposed to.   To  get over this last problem, we 
need to look at the alternative protocol. 
 
 
CALL-BY-REFERENCE 
 
This  one is easy, now that we have  the  mechanisms  already  in 
place.    We  only  have  to  make  a few  changes  to  the  code 
generation.  Instead of  pushing  a value onto the stack, we must 
push an address.  As it turns out, the 68000 has  an instruction, 
PEA, that does just that. 
 
We'll be  making  a  new  version  of  the test program for this. 
Before we do anything else, 
 
>>>> MAKE A COPY <<<< 
 
of  the program as it now stands, because  we'll  be  needing  it 
again later. 
 
Let's begin by looking at the code we'd like to see generated for 
the new case. Using the same example as before, we need the call 
 
 
     FOO(X, Y) 
 
 
to be translated to: 
 
 
     PEA X(PC)           ; Push the address of X 
     PEA Y(PC)           ; Push Y the address of Y 
     BSR FOO             ; Call FOO 
 
 
That's a simple matter of a slight change to Param: 
 
 
{--------------------------------------------------------------} 
{ Process an Actual Parameter } 
 
procedure Param; 
begin 
     EmitLn('PEA ' + GetName + '(PC)'); 
end; 
{--------------------------------------------------------------} 
 
 
(Note that with pass-by-reference, we can't  have  expressions in 
the calling list, so Param can just read the name directly.) 
 
At the other end, the references to the formal parameters must be 
given one level of indirection: 



 
 
     FOO: LINK A6,#0 
          MOVE.L 12(A6),A0    ; Fetch the address of A 
          MOVE (A0),D0        ; Fetch A 
          MOVE D0,-(SP)       ; Push it 
          MOVE.L 8(A6),A0     ; Fetch the address of B 
          MOVE (A0),D0        ; Fetch B 
          ADD (SP)+,D0        ; Add A 
          MOVE.L 12(A6),A0    ; Fetch the address of A 
          MOVE D0,(A0)        : Store A 
          UNLK A6 
          RTS 
 
 
All  of  this  can  be   handled  by  changes  to  LoadParam  and 
StoreParam: 
 
 
{--------------------------------------------------------------} 
{ Load a Parameter to the Primary Register } 
 
procedure LoadParam(N: integer); 
var Offset: integer; 
begin 
     Offset := 8 + 4 * (NumParams - N); 
     Emit('MOVE.L '); 
     WriteLn(Offset, '(A6),A0'); 
     EmitLn('MOVE (A0),D0'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Store a Parameter from the Primary Register } 
 
procedure StoreParam(N: integer); 
var Offset: integer; 
begin 
     Offset := 8 + 4 * (NumParams - N); 
     Emit('MOVE.L '); 
     WriteLn(Offset, '(A6),A0'); 
     EmitLn('MOVE D0,(A0)'); 
end; 
{--------------------------------------------------------------} 
 
To  get  the  count  right,  we  must  also  change  one line  in 
ParamList: 
 
 
     ParamList := 4 * N; 
 
 
That  should  do it.  Give it a try and see  if  it's  generating 
reasonable-looking code.  As  you  will  see,  the code is hardly 
optimal,  since  we  reload  the  address register every  time  a 
parameter  is  needed.    But  that's  consistent  with our  KISS 
approach  here,  of  just being sure to generate code that works. 



We'll  just  make  a  little  note here, that here's yet  another 
candidate for optimization, and press on. 
 
Now we've learned to process parameters  using  pass-by-value and 
pass-by-reference.  In the real world, of course, we'd like to be 
able  to  deal  with BOTH methods.  We can't do that yet, though, 
because we have not yet had a session on types,  and  that has to 
come first. 
 
If  we can only have ONE method, then of course it has to be  the 
good ol' FORTRAN method of  pass-by-reference,  since  that's the 
only way procedures can ever return values to their caller. 
 
This, in fact, will be one of the differences  between  TINY  and 
KISS.  In the next version of TINY,  we'll  use pass-by-reference 
for all parameters.  KISS will support both methods. 
 
 
LOCAL VARIABLES 
 
So  far,  we've  said  nothing  about  local  variables, and  our 
definition of procedures doesn't allow  for  them.    Needless to 
say, that's a big gap in our language, and one  that  needs to be 
corrected. 
 
Here again we are faced with a choice: Static or dynamic storage? 
 
In those  old FORTRAN programs, local variables were given static 
storage just like global ones.  That is, each local  variable got 
a  name  and  allocated address, like any other variable, and was 
referenced by that name. 
 
That's easy for us to do, using the allocation mechanisms already 
in place.  Remember,  though,  that local variables can have  the 
same  names as global ones.  We need to somehow deal with that by 
assigning unique names for these variables. 
 
The characteristic of static storage, of course, is that the data 
survives  a procedure call and return.   When  the  procedure  is 
called  again,  the  data will still be there.  That  can  be  an 
advantage in some applications.    In the FORTRAN days we used to 
do tricks like initialize a flag, so that you could tell when you 
were entering a  procedure  for  the  first time and could do any 
one-time initialization that needed to be done. 
 
Of  course,  the  same  "feature"  is also what  makes  recursion 
impossible with static storage.  Any new call to a procedure will 
overwrite the data already in the local variables. 
 
The alternative is dynamic storage, in which storage is allocated 
on the stack just as for passed parameters.    We  also  have the 
mechanisms  already  for  doing this.  In fact, the same routines 
that  deal with passed (by value) parameters  on  the  stack  can 
easily deal  with  local  variables  as  well  ... the code to be 
generated  is  the  same.  The purpose of the offset in the 68000 
LINK instruction is there just for that reason:  we can use it to 
adjust the stack  pointer  to  make  room  for  locals.   Dynamic 



storage, of course, inherently supports recursion. 
 
When  I  first  began  planning  TINY,  I  must  admit  to  being 
prejudiced in favor of static  storage.    That's  simply because 
those old FORTRAN  programs  were pretty darned efficient ... the 
early FORTRAN compilers  produced  a quality of code that's still 
rarely matched by modern compilers.   Even today, a given program 
written  in  FORTRAN  is likely to outperform  the  same  program 
written in C or Pascal, sometimes  by  wide margins. (Whew!  Am I 
going to hear about THAT statement!) 
 
I've always supposed that the reason had to do with the  two main 
differences  between  FORTRAN  implementations  and  the  others: 
static  storage  and  pass-by-reference.    I  know  that dynamic 
storage  supports  recursion,  but it's always seemed to me a bit 
peculiar to be willing to accept slower code in the 95%  of cases 
that don't need recursion, just to get that feature when you need 
it.  The idea is that, with static storage, you can  use absolute 
addressing  rather than indirect addressing, which should  result 
in faster code. 
 
More recently, though, several folks  have pointed out to me that 
there really is no performance  penalty  associated  with dynamic 
storage.  With the 68000, for example, you shouldn't use absolute 
addressing  anyway  ...  most  operating systems require position 
independent code.  And the 68000 instruction 
 
     MOVE 8(A6),D0 
 
has exactly the same timing as 
 
     MOVE X(PC),D0. 
 
So  I'm  convinced,  now, that there is no good reason NOT to use 
dynamic storage. 
 
Since this use of local variables fits so well into the scheme of 
pass-by-value  parameters,  we'll  use   that   version   of  the 
translator to illustrate it. (I _SURE_ hope you kept a copy!) 
 
The general idea is to keep track of how  many  local  parameters 
there  are.    Then we use the integer in the LINK instruction to 
adjust the stack pointer downward to make room for them.   Formal 
parameters are  addressed  as  positive  offsets  from  the frame 
pointer, and locals as negative offsets.  With a  little  bit  of 
work, the same procedures we've  already created can take care of 
the whole thing. 
 
Let's start by creating a new variable, Base: 
 
 
     var Base: integer; 
 
We'll use this  variable,  instead of NumParams, to compute stack 
offsets.  That means changing  the two references to NumParams in 
LoadParam and StoreParam: 
 



 
{--------------------------------------------------------------} 
{ Load a Parameter to the Primary Register } 
 
procedure LoadParam(N: integer); 
var Offset: integer; 
begin 
     Offset := 8 + 2 * (Base - N); 
     Emit('MOVE '); 
     WriteLn(Offset, '(A6),D0'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Store a Parameter from the Primary Register } 
 
procedure StoreParam(N: integer); 
var Offset: integer; 
begin 
     Offset := 8 + 2 * (Base - N); 
     Emit('MOVE D0,'); 
     WriteLn(Offset, '(A6)'); 
end; 
{--------------------------------------------------------------} 
 
 
The idea is that the value of Base will be  frozen  after we have 
processed the formal parameters, and  won't  increase  further as 
the new, local variables, are inserted in the symbol table.  This 
is taken care of at the end of FormalList: 
 
 
{--------------------------------------------------------------} 
{ Process the Formal Parameter List of a Procedure } 
 
procedure FormalList; 
begin 
     Match('('); 
     if Look <> ')' then begin 
          FormalParam; 
          while Look = ',' do begin 
               Match(','); 
               FormalParam; 
          end; 
     end; 
     Match(')'); 
     Fin; 
     Base := NumParams; 
     NumParams := NumParams + 4; 
end; 
{--------------------------------------------------------------} 
 
 
(We add four words to make allowances for the return  address and 
old frame pointer, which end up between the formal parameters and 
the locals.) 
 



About all we  need  to  do  next  is to install the semantics for 
declaring local variables into the parser.  The routines are very 
similar to Decl and TopDecls: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Local Data Declaration } 
 
procedure LocDecl; 
var Name: char; 
begin 
   Match('v'); 
     AddParam(GetName); 
     Fin; 
end; 
 
 
{--------------------------------------------------------------} 
 
 
{ Parse and Translate Local Declarations } 
 
function LocDecls: integer; 
var n: integer; 
begin 
     n := 0; 
     while Look = 'v' do begin 
          LocDecl; 
          inc(n); 
     end; 
     LocDecls := n; 
end; 
{--------------------------------------------------------------} 
 
 
Note that LocDecls is a  FUNCTION, returning the number of locals 
to DoProc. 
 
Next, we modify DoProc to use this information: 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Procedure Declaration } 
 
procedure DoProc; 
var N: char; 
      k: integer; 
begin 
     Match('p'); 
     N := GetName; 
     if InTable(N) then Duplicate(N); 
     ST[N] := 'p'; 
     FormalList; 
     k := LocDecls; 
     ProcProlog(N, k); 
     BeginBlock; 
     ProcEpilog; 



     ClearParams; 
end; 
{--------------------------------------------------------------} 
 
 
(I've  made   a  couple  of  changes  here  that  weren't  really 
necessary.  Aside from rearranging things a bit, I moved the call 
to  Fin  to  within FormalList, and placed one inside LocDecls as 
well.   Don't forget to put one at the end of FormalList, so that 
we're together here.) 
 
Note the change in the call  to  ProcProlog.  The new argument is 
the number of WORDS (not bytes) to allocate space  for.    Here's 
the new version of ProcProlog: 
 
 
{--------------------------------------------------------------} 
{ Write the Prolog for a Procedure } 
 
procedure ProcProlog(N: char; k: integer); 
begin 
     PostLabel(N); 
     Emit('LINK A6,#'); 
     WriteLn(-2 * k) 
end; 
{--------------------------------------------------------------} 
 
 
That should do it.  Add these changes and see how they work. 
 
 
CONCLUSION 
 
At this point you know  how to compile procedure declarations and 
procedure calls,  with  parameters  passed  by  reference  and by 
value.  You can also handle local variables.  As you can see, the 
hard part is not  in  providing  the  mechanisms, but in deciding 
just which mechanisms to use.  Once we make these  decisions, the 
code to translate the constructs is really not that difficult. 
I didn't  show  you  how  to  deal  with the combination of local 
parameters   and  pass-by-reference  parameters,  but  that's   a 
straightforward extension to  what  you've already seen.  It just 
gets a little more messy, that's all, since we  need  to  support 
both mechanisms instead of just one at a  time.    I'd  prefer to 
save  that  one  until after we've  dealt  with  ways  to  handle 
different variable types. 
 
That will be the next installment, which will be coming soon to a 
Forum near you.  See you then. 
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INTRODUCTION 
 



In the  last installment (Part XIII: PROCEDURES) I mentioned that 
in that part and this one,  we  would cover the two features that 
tend  to  separate  the toy language from a real, usable one.  We 
covered  procedure  calls  in that installment.  Many of you have 
been  waiting patiently, since August '89, for  me  to  drop  the 
other shoe.  Well, here it is. 
 
In this installment, we'll talk  about how to deal with different 
data types.  As I did in the last segment, I will NOT incorporate 
these  features directly into the TINY  compiler  at  this  time. 
Instead, I'll be using the same approach that has worked  so well 
for  us  in the past: using only  fragments  of  the  parser  and 
single-character  tokens.    As  usual,  this  allows  us to  get 
directly to the  heart  of  the  matter  without  having  to wade 
through a lot of  unnecessary  code.  Since the major problems in 
dealing with multiple types occur in  the  arithmetic operations, 
that's where we'll concentrate our focus. 
 
A  few words of warning:  First, there are some types that I will 
NOT  be  covering in this installment.   Here  we  will  ONLY  be 
talking about the simple, predefined types.  We  won't  even deal 
with arrays, pointers or strings  in  this  installment;  I'll be 
covering them in the next few. 
 
Second, we also will not discuss user-defined types.    That will 
not come until  much  later,  for  the simple reason that I still 
haven't convinced myself  that  user-defined  types  belong  in a 
language named KISS.  In later installments, I do intend to cover 
at least the general  concepts  of  user-defined  types, records, 
etc., just so that the series  will  be complete.  But whether or 
not they will be included as part of KISS is still an open issue. 
I am open to comments or suggestions on this question. 
 
Finally,  I  should  warn you: what we are about to  do  CAN  add 
considerable  extra  complication  to  both  the  parser  and the 
generated  code.    Handling  variables  of  different  types  is 
straightforward enough.  The complexity  comes  in  when  you add 
rules about conversion between types.  In general,  you  can make 
the  compiler  as  simple or as complex as you choose to make it, 
depending upon the  way  you  define  the  type-conversion rules. 
Even if you decide not to allow ANY type conversions (as  in Ada, 
for example) the problem is still there, and is  built  into  the 
mathematics.  When  you  multiply two short numbers, for example, 
you can get a long result. 
 
I've approached this problem very  carefully,  in  an  attempt to 
Keep It Simple.  But we can't avoid the complexity entirely.   As 
has so often has happened, we end up having to trade code quality 
against complexity,  and  as  usual  I  will  tend to opt for the 
simplest approach. 
 
 
WHAT'S COMING NEXT? 
 
Before diving into the tutorial, I think you'd like to know where 
we are going  from  here  ...  especially since it's been so long 
since the last installment. 



 
I have not been idle in  the  meantime.   What I've been doing is 
reorganizing  the  compiler  itself into Turbo Units.  One of the 
problems I've encountered is that  as we've covered new areas and 
thereby added features to  the  TINY  compiler, it's been getting 
longer and longer.  I realized a couple of installments back that 
this was causing trouble, and that's why I've gone back  to using 
only compiler fragments for  the  last  installment and this one. 
The problem is that it just  seems  dumb to have to reproduce the 
code  for,  say,  processing  boolean  exclusive  OR's,  when the 
subject of the discussion is parameter passing. 
 
The obvious way  to have our cake and eat it, too, is to break up 
the compiler into separately compilable  modules,  and  of course 
the Turbo Unit is an ideal  vehicle  for doing this.  This allows 
us to hide some fairly complex code (such as the  full arithmetic 
and boolean expression parsing) into a single unit, and just pull 
it in whenever it's needed.  In that way, the only code I'll have 
to reproduce in these installments will be the code that actually 
relates to the issue under discussion. 
 
I've  also  been  toying with Turbo 5.5, which of course includes 
the Borland object-oriented  extensions  to  Pascal.    I haven't 
decided whether to make use of these features,  for  two reasons. 
First of all, many of you who have been following this series may 
still not have 5.5, and I certainly don't want to force anyone to 
have to go out and  buy  a  new  compiler  just  to  complete the 
series.  Secondly, I'm not convinced that the O-O extensions have 
all that much value for this application.  We've been having some 
discussions  about that in CompuServe's CLM  forum,  and  so  far 
we've  not found any compelling reason  to  use  O-O  constructs. 
This is another of those areas where I could  use  some  feedback 
from you readers.  Anyone want to vote for Turbo 5.5 and O-O? 
 
In any case, after  the  next few installments in the series, the 
plan  is  to  upload to you a complete set of Units, and complete 
functioning compilers as  well.    The  plan, in fact, is to have 
THREE compilers:  One for  a single-character version of TINY (to 
use  for  our  experiments), one for TINY and one for KISS.  I've 
pretty much isolated the differences between TINY and KISS, which 
are these: 
 
   o TINY will support only two data types: The character and the 
     16-bit  integer.    I may also  try  to  do  something  with 
     strings, since  without  them  a  compiler  would  be pretty 
     useless.   KISS will support all  the  usual  simple  types, 
     including arrays and even floating point. 
 
   o TINY will only have two control constructs, the  IF  and the 
     WHILE.  KISS will  support  a  very  rich set of constructs, 
     including one we haven't discussed here before ... the CASE. 
 
   o KISS will support separately compilable modules. 
 
One caveat: Since I still don't know much  about  80x86 assembler 
language, all these compiler modules  will  still  be  written to 
support 68000 code.  However, for the programs I plan  to upload, 



all the code generation  has  been  carefully encapsulated into a 
single unit, so that any enterprising student should  be  able to 
easily retarget to any other processor.  This task is "left as an 
exercise for the  student."    I'll  make an offer right here and 
now:  For the person who provides us the first robust retarget to 
80x86, I will be happy to discuss shared copyrights and royalties 
from the book that's upcoming. 
 
But enough talk.  Let's get on with  the  study  of  types.  As I 
said  earlier,  we'll  do  this  one  as  we  did  in   the  last 
installment:  by  performing experiments  using  single-character 
tokens. 
 
 
THE SYMBOL TABLE 
 
It should be apparent that, if we're going to deal with variables 
of different types, we're going  to need someplace to record what 
those  types are.  The obvious vehicle for  that  is  the  symbol 
table, and we've already  used  it  that  way to distinguish, for 
example,   between  local  and  global  variables,  and   between 
variables and procedures. 
 
The  symbol  table   structure  for  single-character  tokens  is 
particularly simple, and we've used  it several times before.  To 
deal with it, we'll steal some procedures that we've used before. 
 
First, we need to declare the symbol table itself: 
 
 
{--------------------------------------------------------------} 
{ Variable Declarations } 
 
var Look: char;              { Lookahead Character } 
 
    ST: Array['A'..'Z'] of char;   {  *** ADD THIS LINE ***} 
{--------------------------------------------------------------} 
 
 
Next, we need to make sure it's initialized as part  of procedure 
Init: 
 
 
{--------------------------------------------------------------} 
{ Initialize } 
 
procedure Init; 
var i: char; 
begin 
   for i := 'A' to 'Z' do 
      ST[i] := '?'; 
   GetChar; 
end; 
{--------------------------------------------------------------} 
 
 
We don't really need  the  next procedure, but it will be helpful 



for debugging.  All it does is to dump the contents of the symbol 
table: 
 
 
{--------------------------------------------------------------} 
{ Dump the Symbol Table } 
 
procedure DumpTable; 
var i: char; 
begin 
   for i := 'A' to 'Z' do 
      WriteLn(i, ' ', ST[i]); 
end; 
{--------------------------------------------------------------} 
 
 
It really doesn't matter much where you put this procedure  ... I 
plan to cluster all the symbol table routines together, so  I put 
mine just after the error reporting procedures. 
 
If  you're  the  cautious type (as I am), you might want to begin 
with a test program that does nothing but initializes, then dumps 
the table.  Just to be sure that we're all on the same wavelength 
here, I'm reproducing the entire program below, complete with the 
new  procedures.  Note that this  version  includes  support  for 
white space: 
 
 
{--------------------------------------------------------------} 
program Types; 
 
{--------------------------------------------------------------} 
{ Constant Declarations } 
 
const TAB = ^I; 
      CR  = ^M; 
      LF  = ^J; 
 
{--------------------------------------------------------------} 
{ Variable Declarations } 
 
var Look: char;              { Lookahead Character } 
 
    ST: Array['A'..'Z'] of char; 
 
 
{--------------------------------------------------------------} 
{ Read New Character From Input Stream } 
 
procedure GetChar; 
begin 
   Read(Look); 
end; 
 
 
{--------------------------------------------------------------} 
{ Report an Error } 



 
procedure Error(s: string); 
begin 
   WriteLn; 
   WriteLn(^G, 'Error: ', s, '.'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Report Error and Halt } 
 
procedure Abort(s: string); 
begin 
   Error(s); 
   Halt; 
end; 
 
 
{--------------------------------------------------------------} 
{ Report What Was Expected } 
 
procedure Expected(s: string); 
begin 
   Abort(s + ' Expected'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Dump the Symbol Table } 
 
procedure DumpTable; 
var i: char; 
begin 
   for i := 'A' to 'Z' do 
        WriteLn(i, ' ', ST[i]); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an Alpha Character } 
 
function IsAlpha(c: char): boolean; 
begin 
   IsAlpha := UpCase(c) in ['A'..'Z']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Decimal Digit } 
 
function IsDigit(c: char): boolean; 
begin 
   IsDigit := c in ['0'..'9']; 
end; 
 
 
{--------------------------------------------------------------} 



{ Recognize an AlphaNumeric Character } 
 
function IsAlNum(c: char): boolean; 
begin 
   IsAlNum := IsAlpha(c) or IsDigit(c); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize an Addop } 
 
function IsAddop(c: char): boolean; 
begin 
   IsAddop := c in ['+', '-']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Mulop } 
 
function IsMulop(c: char): boolean; 
begin 
   IsMulop := c in ['*', '/']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Boolean Orop } 
 
function IsOrop(c: char): boolean; 
begin 
   IsOrop := c in ['|', '~']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize a Relop } 
 
function IsRelop(c: char): boolean; 
begin 
   IsRelop := c in ['=', '#', '<', '>']; 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize White Space } 
 
function IsWhite(c: char): boolean; 
begin 
   IsWhite := c in [' ', TAB]; 
end; 
 
 
{--------------------------------------------------------------} 
{ Skip Over Leading White Space } 
 
procedure SkipWhite; 



begin 
   while IsWhite(Look) do 
      GetChar; 
end; 
 
 
{--------------------------------------------------------------} 
{ Skip Over an End-of-Line } 
 
procedure Fin; 
begin 
   if Look = CR then begin 
      GetChar; 
      if Look = LF then 
         GetChar; 
   end; 
end; 
 
 
{--------------------------------------------------------------} 
{ Match a Specific Input Character } 
 
procedure Match(x: char); 
begin 
   if Look = x then GetChar 
   else Expected('''' + x + ''''); 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
function GetName: char; 
begin 
   if not IsAlpha(Look) then Expected('Name'); 
   GetName := UpCase(Look); 
   GetChar; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNum: char; 
begin 
   if not IsDigit(Look) then Expected('Integer'); 
   GetNum := Look; 
   GetChar; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Output a String with Tab } 
 



procedure Emit(s: string); 
begin 
   Write(TAB, s); 
end; 
 
 
{--------------------------------------------------------------} 
{ Output a String with Tab and CRLF } 
 
procedure EmitLn(s: string); 
begin 
   Emit(s); 
   WriteLn; 
end; 
 
 
{--------------------------------------------------------------} 
{ Initialize } 
 
procedure Init; 
var i: char; 
begin 
   for i := 'A' to 'Z' do 
      ST[i] := '?'; 
   GetChar; 
   SkipWhite; 
end; 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
   Init; 
   DumpTable; 
end. 
{--------------------------------------------------------------} 
 
 
OK, run this program.  You  should  get a (very fast) printout of 
all the letters of  the  alphabet  (potential  identifiers), each 
followed by  a  question  mark.    Not  very exciting, but it's a 
start. 
 
Of course, in general we  only  want  to  see  the  types  of the 
variables that have been defined.  We can eliminate the others by 
modifying DumpTable with an IF test.  Change the loop to read: 
 
 
  for i := 'A' to 'Z' do 
     if ST[i] <> '?' then 
         WriteLn(i, ' ', ST[i]); 
 
 
Now, run the program again.  What did you get? 
 
Well, that's even more  boring  than before!  There was no output 



at all, since at this point NONE of the names have been declared. 
We  can  spice  things up a  bit  by  inserting  some  statements 
declaring some entries in the main program.  Try these: 
 
 
     ST['A'] := 'a'; 
     ST['P'] := 'b'; 
     ST['X'] := 'c'; 
 
 
This time, when  you  run  the  program, you should get an output 
showing that the symbol table is working right. 
 
 
ADDING ENTRIES 
 
Of course, writing to the table directly is pretty poor practice, 
and not one that will  help  us  much  later.   What we need is a 
procedure to add entries to the table.  At the same time, we know 
that  we're going to need to test the table, to make sure that we 
aren't redeclaring a variable that's already in use  (easy  to do 
with only 26 choices!).  To handle all this, enter  the following 
new procedures: 
 
 
{--------------------------------------------------------------} 
{ Report Type of a Variable } 
 
 
function TypeOf(N: char): char; 
begin 
   TypeOf := ST[N]; 
end; 
 
 
{--------------------------------------------------------------} 
{ Report if a Variable is in the Table } 
 
 
function InTable(N: char): boolean; 
begin 
   InTable := TypeOf(N) <> '?'; 
end; 
 
 
{--------------------------------------------------------------} 
{ Check for a Duplicate Variable Name } 
 
procedure CheckDup(N: char); 
begin 
   if InTable(N) then Abort('Duplicate Name ' + N); 
end; 
 
 
{--------------------------------------------------------------} 
{ Add Entry to Table } 
 



procedure AddEntry(N, T: char); 
begin 
   CheckDup(N); 
   ST[N] := T; 
end; 
{--------------------------------------------------------------} 
 
 
Now change the three lines in the main program to read: 
 
 
     AddEntry('A', 'a'); 
     AddEntry('P', 'b'); 
     AddEntry('X', 'c'); 
                              
 
and run the program again.  Did it work?  Then we have the symbol 
table routines needed to support our work on types.  In  the next 
section, we'll actually begin to use them. 
 
 
ALLOCATING STORAGE 
 
In  other programs like this one,  including  the  TINY  compiler 
itself, we have  already  addressed the issue of declaring global 
variables, and the  code  generated  for  them.    Let's  build a 
vestigial version of a "compiler" here, whose only function is to 
allow  us   declare  variables.    Remember,  the  syntax  for  a 
declaration is: 
 
 
     <data decl> ::= VAR <identifier> 
 
 
Again, we can lift a lot of the code from previous programs.  The 
following are stripped-down versions of those  procedures.   They 
are greatly simplified  since  I  have  eliminated  niceties like 
variable lists and  initializers.   In procedure Alloc, note that 
the  new call to AddEntry will also  take  care  of  checking for 
duplicate declarations: 
 
 
{--------------------------------------------------------------} 
{ Allocate Storage for a Variable } 
 
procedure Alloc(N: char); 
begin 
   AddEntry(N, 'v'); 
   WriteLn(N, ':', TAB, 'DC 0'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Data Declaration } 
 
procedure Decl; 
var Name: char; 



begin 
   Match('v'); 
   Alloc(GetName); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate Global Declarations } 
 
procedure TopDecls; 
begin 
   while Look <> '.' do begin 
      case Look of 
        'v': Decl; 
      else Abort('Unrecognized Keyword ' + Look); 
      end; 
      Fin; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
Now, in the  main  program,  add  a  call to TopDecls and run the 
program.  Try allocating a  few variables, and note the resulting 
code generated.  This is old stuff for you, so the results should 
look familiar.  Note from the code for TopDecls that  the program 
is ended by a terminating period. 
 
While you're at it,  try  declaring  two  variables with the same 
name, and verify that the parser catches the error. 
 
 
DECLARING TYPES 
 
 
Allocating storage of different sizes  is  as  easy  as modifying 
procedure TopDecls to recognize more than one keyword.  There are 
a  number  of  decisions to be made here, in terms  of  what  the 
syntax should be, etc., but for now I'm  going  to  duck  all the 
issues and simply declare by  executive fiat that our syntax will 
be: 
 
 
     <data decl> ::= <typename>  <identifier> 
 
where: 
 
 
     <typename> ::= BYTE | WORD | LONG 
 
 
(By  an amazing coincidence, the first  letters  of  these  names 
happen  to  be  the  same  as  the  68000  assembly  code  length 
specifications, so this choice saves us a little work.) 
 
We can create the code to take care of  these  declarations  with 
only slight modifications.  In the routines below, note that I've 



separated  the  code  generation parts of Alloc  from  the  logic 
parts.  This  is  in  keeping  with our desire to encapsulate the 
machine-dependent part of the compiler. 
 
 
{--------------------------------------------------------------} 
{ Generate Code for Allocation of a Variable } 
 
procedure AllocVar(N, T: char); 
begin 
   WriteLn(N, ':', TAB, 'DC.', T, ' 0'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Allocate Storage for a Variable } 
 
procedure Alloc(N, T: char); 
begin 
   AddEntry(N, T); 
   AllocVar(N, T); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Data Declaration } 
 
procedure Decl; 
var Typ: char; 
begin 
   Typ := GetName; 
   Alloc(GetName, Typ); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate Global Declarations } 
 
procedure TopDecls; 
begin 
   while Look <> '.' do begin 
      case Look of 
        'b', 'w', 'l': Decl; 
      else Abort('Unrecognized Keyword ' + Look); 
      end; 
      Fin; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
Make the changes shown to these procedures, and give the  thing a 
try.    Use  the  single  characters  'b',  'w',  and 'l' for the 
keywords (they must be lower case,  for  now).  You will see that 
in each case, we are allocating the proper storage  size.    Note 
from the dumped symbol table that the sizes are also recorded for 
later use.  What later use?  Well, that's the subject of the rest 



of this installment. 
 
 
ASSIGNMENTS 
 
Now that we can declare variables of different  sizes,  it stands 
to reason that we ought to be able  to  do  something  with them. 
For our first trick, let's just try loading them into our working 
register, D0.  It makes sense to use the same  idea  we used for 
Alloc; that is, make a load procedure that can load more than one 
size.    We  also  want  to continue to encapsulate the  machine- 
dependent stuff.  The load procedure looks like this: 
 
 
{---------------------------------------------------------------} 
{ Load a Variable to Primary Register } 
 
procedure LoadVar(Name, Typ: char); 
begin 
   Move(Typ, Name + '(PC)', 'D0'); 
end; 
{---------------------------------------------------------------} 
 
 
On  the  68000,  at least, it happens that many instructions turn 
out to be MOVE's.  It turns out to be useful to create a separate 
code generator just for these instructions, and then  call  it as 
needed: 
 
 
{---------------------------------------------------------------} 
{ Generate a Move Instruction } 
 
procedure Move(Size: char; Source, Dest: String); 
begin 
   EmitLn('MOVE.' + Size + ' ' + Source + ',' + Dest); 
end; 
{---------------------------------------------------------------} 
 
 
Note that these  two  routines are strictly code generators; they 
have no error-checking or other  logic.  To complete the picture, 
we need one more layer of software that provides these functions. 
 
First of all, we need to make sure that the  type  we are dealing 
with is a  loadable  type.    This  sounds like a job for another 
recognizer: 
 
 
{--------------------------------------------------------------} 
{ Recognize a Legal Variable Type } 
 
function IsVarType(c: char): boolean; 
begin 
   IsVarType := c in ['B', 'W', 'L']; 
end; 
{--------------------------------------------------------------} 



 
 
Next, it would be nice to have a routine that will fetch the type 
of a variable from the symbol table, while checking  it  to  make 
sure it's valid: 
 
 
{--------------------------------------------------------------} 
{ Get a Variable Type from the Symbol Table } 
 
function VarType(Name: char): char; 
var Typ: char; 
begin 
   Typ := TypeOf(Name); 
   if not IsVarType(Typ) then Abort('Identifier ' + Name + 
                                        ' is not a variable'); 
   VarType := Typ; 
end; 
{--------------------------------------------------------------} 
 
 
Armed with these  tools,  a  procedure  to cause a variable to be 
loaded becomes trivial: 
 
 
{--------------------------------------------------------------} 
{ Load a Variable to the Primary Register } 
 
procedure Load(Name: char); 
begin 
     LoadVar(Name, VarType(Name)); 
end; 
{--------------------------------------------------------------} 
 
 
(NOTE to the  concerned:  I  know,  I  know, all this is all very 
inefficient.  In a production  program,  we  probably  would take 
steps to avoid such deep nesting of procedure calls.  Don't worry 
about it.  This is an EXERCISE, remember?  It's more important to 
get it  right  and  understand  it, than it is to make it get the 
wrong  answer,  quickly.   If you get your compiler completed and 
find that you're unhappy  with  the speed, feel free to come back 
and hack the code to speed it up!) 
 
It would be a good idea to test the program at this point.  Since 
we don't have a  procedure  for  dealing  with assignments yet, I 
just added the lines: 
 
 
     Load('A'); 
     Load('B'); 
     Load('C'); 
     Load('X'); 
 
 
to  the main program.  Thus, after  the  declaration  section  is 
complete, they will be executed to generate code  for  the loads. 



You can play around with  this, and try different combinations of 
declarations to see how the errors are handled. 
 
I'm sure you won't be surprised to learn  that  storing variables 
is a lot like  loading  them.  The necessary procedures are shown 
next: 
 
 
{---------------------------------------------------------------} 
{ Store Primary to Variable } 
 
procedure StoreVar(Name, Typ: char); 
begin 
   EmitLn('LEA ' + Name + '(PC),A0'); 
   Move(Typ, 'D0', '(A0)'); 
end; 
 
 
{--------------------------------------------------------------} 
{ Store a Variable from the Primary Register } 
 
procedure Store(Name: char); 
begin 
   StoreVar(Name, VarType(Name)); 
end; 
{--------------------------------------------------------------} 
 
 
You can test this one the same way as the loads. 
 
Now, of course, it's a RATHER  small  step to use these to handle 
assignment  statements.  What we'll do is  to  create  a  special 
version   of  procedure  Block  that  supports  only   assignment 
statements, and also a  special  version  of Expression that only 
supports single variables as legal expressions.  Here they are: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
procedure Expression; 
var Name: char; 
begin 
   Load(GetName); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment; 
var Name: char; 
begin 
   Name := GetName; 
   Match('='); 
   Expression; 
   Store(Name); 



end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate a Block of Statements } 
 
procedure Block; 
begin 
   while Look <> '.' do begin 
      Assignment; 
      Fin; 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
(It's worth noting that, if  anything,  the  new  procedures that 
permit us to manipulate types  are, if anything, even simpler and 
cleaner than what we've seen before.  This is  mostly  thanks  to 
our efforts to encapsulate the code generator procedures.) 
 
There is one small, nagging problem.  Before, we used  the Pascal 
terminating period to get us out of procedure TopDecls.   This is 
now the wrong  character  ...  it's  used to terminate Block.  In 
previous programs, we've used the BEGIN symbol  (abbreviated 'b') 
to get us out.  But that is now used as a type symbol. 
 
The solution, while somewhat of a kludge, is easy enough.   We'll 
use  an  UPPER CASE 'B' to stand for the BEGIN.   So  change  the 
character in the WHILE loop within TopDecls, from '.' to 'B', and 
everything will be fine. 
 
Now, we can  complete  the  task  by changing the main program to 
read: 
 
 
{--------------------------------------------------------------} 
{ Main Program } 
 
begin 
   Init; 
   TopDecls; 
   Match('B'); 
   Fin; 
   Block; 
   DumpTable; 
end. 
{--------------------------------------------------------------} 
 
 
(Note  that I've had to sprinkle a few calls to Fin around to get 
us out of Newline troubles.) 
 
OK, run this program.  Try the input: 
 
 
     ba        { byte a }   *** DON'T TYPE THE COMMENTS!!! *** 



     wb        { word b } 
     lc        { long c } 
     B         { begin  } 
     a=a 
     a=b 
     a=c 
     b=a 
     b=b 
     b=c 
     c=a 
     c=b 
     c=c 
     . 
 
 
For  each  declaration,  you  should  get  code   generated  that 
allocates storage.  For each assignment, you should get code that 
loads a variable of the correct size, and stores one, also of the 
correct size. 
 
There's only one small  little  problem:    The generated code is 
WRONG! 
 
Look at the code for a=c above.  The code is: 
 
 
     MOVE.L    C(PC),D0 
     LEA       A(PC),A0 
     MOVE.B    D0,(A0) 
 
 
This code is correct.  It will cause the lower eight bits of C to 
be stored into A, which is a reasonable behavior.  It's about all 
we can expect to happen. 
 
But now, look at the opposite case.  For c=a, the  code generated 
is: 
 
 
     MOVE.B A(PC),D0 
     LEA  C(PC),A0 
     MOVE.L D0,(A0) 
 
 
This is  NOT  correct.    It will cause the byte variable A to be 
stored into the lower eight bits  of  D0.  According to the rules 
for the 68000 processor,  the  upper 24 bits are unchanged.  This 
means  that when we store the entire 32  bits  into  C,  whatever 
garbage  that  was  in those high bits will also get stored.  Not 
good. 
 
So what  we  have  run  into here, early on, is the issue of TYPE 
CONVERSION, or COERCION. 
 
Before we do anything with  variables of different types, even if 
it's just to  copy  them, we have to face up to the issue.  It is 
not the most easy part of a compiler.  Most of  the  bugs  I have 



seen in production compilers  have  had to do with errors in type 
conversion for  some obscure combination of arguments.  As usual, 
there is a tradeoff between compiler complexity and the potential 
quality of the  generated  code,  and  as usual, we will take the 
path that keeps the  compiler  simple.  I think you'll find that, 
with this approach, we can keep the potential complexity in check 
rather nicely. 
 
 
THE COWARD'S WAY OUT 
 
Before we get into the details (and potential complexity) of type 
conversion,  I'd  like  you to see that there is one super-simple 
way to solve the problem: simply promote every variable to a long 
integer when we load it! 
 
This takes the addition of only one line to LoadVar,  although if 
we  are  not  going to COMPLETELY ignore efficiency, it should be 
guarded by an IF test.  Here is the modified version: 
 
 
{---------------------------------------------------------------} 
{ Load a Variable to Primary Register } 
 
procedure LoadVar(Name, Typ: char); 
begin 
   if Typ <> 'L' then 
      EmitLn('CLR.L D0'); 
   Move(Typ, Name + '(PC)', 'D0'); 
end; 
{---------------------------------------------------------------} 
 
 
(Note that StoreVar needs no similar change.) 
 
If you run some tests with  this  new version, you will find that 
everything  works correctly now, albeit sometimes  inefficiently. 
For example, consider the case  a=b  (for  the  same declarations 
shown above).  Now the generated code turns out to be: 
 
 
     CLR.L D0 
     MOVE.W B(PC),D0 
     LEA  A(PC),A0 
     MOVE.B D0,(A0) 
 
 
In  this  case,  the CLR turns out not to be necessary, since the 
result is going into a byte-sized variable.  With a little bit of 
work, we can do better.  Still, this is not  bad,  and it typical 
of the kinds of inefficiencies  that we've seen before in simple- 
minded compilers. 
 
I should point out that, by setting the high bits to zero, we are 
in effect treating the numbers as UNSIGNED integers.  If  we want 
to treat them as signed ones instead (the more  likely  case)  we 
should do a  sign  extension  after  the load, instead of a clear 



before it. Just  to  tie  this  part  of the discussion up with a 
nice, red ribbon, let's change LoadVar as shown below: 
 
 
{---------------------------------------------------------------} 
{ Load a Variable to Primary Register } 
 
procedure LoadVar(Name, Typ: char); 
begin 
   if Typ = 'B' then 
      EmitLn('CLR.L D0'); 
   Move(Typ, Name + '(PC)', 'D0'); 
   if Typ = 'W' then 
      EmitLn('EXT.L D0'); 
end; 
{---------------------------------------------------------------} 
 
 
With this version, a byte is treated as unsigned  (as  in  Pascal 
and C), while a word is treated as signed. 
 
 
A MORE REASONABLE SOLUTION 
 
As we've seen, promoting  every  variable  to  long while it's in 
memory solves the problem, but it can hardly be called efficient, 
and  probably wouldn't be acceptable even for  those  of  us  who 
claim be unconcerned about  efficiency.    It  will mean that all 
arithmetic operations will be done to 32-bit accuracy, which will 
DOUBLE the run time  for  most operations, and make it even worse 
for multiplication  and division.  For those operations, we would 
need to call subroutines to do  them,  even if the data were byte 
or  word types.  The whole thing is sort of a cop-out, too, since 
it ducks all the real issues. 
 
OK, so that solution's no good.  Is there still a relatively easy 
way to get data conversion?  Can we still Keep It Simple? 
 
Yes, indeed.   All we have to do is to make the conversion at the 
other end ... that is, we convert on the way _OUT_, when the data 
is stored, rather than on the way in. 
 
But, remember, the storage part  of the assignment is pretty much 
independent of the data load, which is taken care of by procedure 
Expression.    In  general  the  expression  may  be  arbitrarily 
complex, so how can procedure Assignment know what  type  of data 
is left in register D0? 
 
Again,  the  answer  is  simple:    We'll  just  _ASK_  procedure 
Expression!  The answer can be returned as a function value. 
 
All of this requires several procedures to be  modified,  but the 
mods, like the method, are quite simple.  First of all,  since we 
aren't requiring LoadVar to do  all the work of conversion, let's 
go back to the simple version: 
 
 



{---------------------------------------------------------------} 
{ Load a Variable to Primary Register } 
 
procedure LoadVar(Name, Typ: char); 
begin 
   Move(Typ, Name + '(PC)', 'D0'); 
end; 
{--------------------------------------------------------------} 
 
 
Next, let's add a  new  procedure that will convert from one type 
to another: 
 
 
{---------------------------------------------------------------} 
{ Convert a Data Item from One Type to Another } 
 
 
procedure Convert(Source, Dest: char); 
begin 
   if Source <> Dest then begin 
      if Source  = 'B' then 
         EmitLn('AND.W #$FF,D0'); 
      if Dest = 'L' then 
         EmitLn('EXT.L D0'); 
   end; 
end; 
{--------------------------------------------------------------} 
 
 
Next, we need to do  the  logic  required  to  load  and  store a 
variable of any type.  Here are the routines for that: 
 
 
{---------------------------------------------------------------} 
{ Load a Variable to the Primary Register } 
 
function Load(Name: char): char; 
var Typ : char; 
begin 
   Typ := VarType(Name); 
   LoadVar(Name, Typ); 
   Load := Typ; 
end; 
 
 
{--------------------------------------------------------------} 
{ Store a Variable from the Primary Register } 
 
procedure Store(Name, T1: char); 
var T2: char; 
begin 
   T2 := VarType(Name); 
   Convert(T1, T2); 
   StoreVar(Name, T2); 
end; 
{--------------------------------------------------------------} 



 
 
Note that Load is a function, which not only emits the code for a 
load, but also returns the variable type.  In this way, we always 
know what type of data we  are  dealing  with.  When we execute a 
Store,  we pass it the current type of the variable in D0.  Since 
Store also knows the  type  of  the  destination variable, it can 
convert as necessary. 
 
Armed  with all these new routines,  the  implementation  of  our 
rudimentary   assignment   statement  is   essentially   trivial. 
Procedure Expression now becomes a  function,  which  returns its 
type to procedure Assignment: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
function Expression: char; 
begin 
   Expression := Load(GetName); 
end; 
 
 
{--------------------------------------------------------------} 
{ Parse and Translate an Assignment Statement } 
 
procedure Assignment; 
var Name: char; 
begin 
   Name := GetName; 
   Match('='); 
   Store(Name, Expression); 
end; 
{--------------------------------------------------------------} 
 
Again, note how  incredibly  simple these two routines are. We've 
encapsulated  all the type logic into Load  and  Store,  and  the 
trick of  passing  the  type  around  makes  the rest of the work 
extremely easy.    Of  course,  all  of  this is for our special, 
trivial case of Expression.  Naturally, for the  general  case it 
will have to get more complex.  But  you're  looking  now  at the 
FINAL version of procedure Assignment! 
 
All this seems like a very  simple  and clean solution, and it is 
indeed.   Compile this program and run the  same  test  cases  as 
before.    You will see that all  types  of  data  are  converted 
properly, and there are few if any wasted instructions.  Only the 
byte-to-long conversion uses two instructions where one would do, 
and we could easily modify Convert to handle this case, too. 
 
Although we haven't considered unsigned variables in this case, I 
think you can see  that  we could easily fix up procedure Convert 
to deal with these types as well.  This is  "left  as an exercise 
for the student." 
 
 



LITERAL ARGUMENTS 
 
Sharp-eyed readers might have noticed, though, that we don't even 
have a proper form of a simple factor yet, because we don't allow 
for loading literal constants,  only  variables.   Let's fix that 
now. 
 
To begin with, we'll need a GetNum function.  We've  seen several 
versions of this, some returning  only a single character, some a 
string, and some an integer.   The  one needed here will return a 
LongInt, so that it can handle anything we  throw  at  it.   Note 
that no type information is returned here: GetNum doesn't concern 
itself with how the number will be used: 
 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNum: LongInt; 
var Val: LongInt; 
begin 
   if not IsDigit(Look) then Expected('Integer'); 
   Val := 0; 
   while IsDigit(Look) do begin 
      Val := 10 * Val + Ord(Look) - Ord('0'); 
      GetChar; 
   end; 
   GetNum := Val; 
   SkipWhite; 
end; 
{---------------------------------------------------------------} 
 
 
Now, when dealing with  literal  data,  we  have one little small 
problem.   With variables, we know what  type  things  should  be 
because they've been declared to be  that  type.  We have no such 
type information for  literals.   When the programmer says, "-1," 
does that mean a byte, word, or longword  version?    We  have no 
clue.  The obvious thing to do would be to  use  the largest type 
possible, i.e. a longword.    But that's a bad idea, because when 
we get to more complex expressions, we'll find that it will cause 
every expression involving literals  to  be  promoted to long, as 
well. 
 
A better approach is to select a type based upon the value of the 
literal, as shown next: 
 
 
{--------------------------------------------------------------} 
{ Load a Constant to the Primary Register } 
 
function LoadNum(N: LongInt): char; 
var Typ : char; 
begin 
   if abs(N) <= 127 then 
      Typ := 'B' 
   else if abs(N) <= 32767 then 



      Typ := 'W' 
   else Typ := 'L'; 
   LoadConst(N, Typ); 
   LoadNum := Typ; 
end; 
{---------------------------------------------------------------} 
 
 
(I know, I know, the number base isn't really symmetric.  You can 
store -128 in a single byte,  and  -32768  in a word.  But that's 
easily fixed, and not  worth  the time or the added complexity to 
fool with it here.  It's the thought that counts.) 
 
Note  that  LoadNum  calls  a  new version of the code  generator 
routine  LoadConst, which has an added  argument  to  define  the 
type: 
 
 
{---------------------------------------------------------------} 
{ Load a Constant to the Primary Register } 
 
procedure LoadConst(N: LongInt; Typ: char); 
var temp:string; 
begin 
   Str(N, temp); 
   Move(Typ, '#' + temp, 'D0'); 
end; 
{--------------------------------------------------------------} 
 
 
Now  we can modify procedure Expression  to  accomodate  the  two 
possible kinds of factors: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
function Expression: char; 
begin 
   if IsAlpha(Look) then 
      Expression := Load(GetName) 
   else 
      Expression := LoadNum(GetNum); 
end; 
{--------------------------------------------------------------} 
 
 
(Wow, that sure didn't hurt too bad!  Just a  few  extra lines do 
the job.) 
 
OK,  compile  this code into your program  and  give  it  a  try. 
You'll see that it now works for either variables or constants as 
valid expressions. 
 
 
ADDITIVE EXPRESSIONS 
 



If you've been following this series from the beginning, I'm sure 
you  know  what's coming next:  We'll  expand  the  form  for  an 
expression   to   handle   first   additive   expressions,   then 
multiplicative, then general expressions with parentheses. 
 
The nice part is that we already have a pattern for  dealing with 
these more complex expressions.  All we have  to  do  is  to make 
sure that  all the procedures called by Expression (Term, Factor, 
etc.)  always  return a type identifier.   If  we  do  that,  the 
program structure gets changed hardly at all. 
 
The  first  step  is  easy:  We can rename our existing  function 
Expression  to  Term,  as  we've  done so many times before,  and 
create the new version of Expression: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate an Expression } 
 
function Expression: char; 
var Typ: char; 
begin 
   if IsAddop(Look) then 
      Typ := Unop 
   else 
      Typ := Term; 
   while IsAddop(Look) do begin 
      Push(Typ); 
      case Look of 
       '+': Typ := Add(Typ); 
       '-': Typ := Subtract(Typ); 
      end; 
   end; 
   Expression := Typ; 
end; 
{--------------------------------------------------------------} 
 
 
Note  in  this  routine how each  procedure  call  has  become  a 
function call, and how  the  local  variable  Typ gets updated at 
each pass. 
 
Note also the new call to a function  Unop,  which  lets  us deal 
with a leading unary minus.  This change is not necessary  ... we 
could  still  use  a form more like what we've done before.  I've 
chosen  to  introduce  UnOp as a separate routine because it will 
make it easier, later, to produce somewhat better code than we've 
been  doing.    In other words, I'm looking ahead to optimization 
issues. 
 
For  this  version,  though, we'll retain the same dumb old code, 
which makes the new routine trivial: 
 
 
{---------------------------------------------------------------} 
{ Process a Term with Leading Unary Operator } 
 



function Unop: char; 
begin 
   Clear; 
   Unop := 'W'; 
end; 
{---------------------------------------------------------------} 
 
 
Procedure  Push  is  a code-generator routine, and now has a type 
argument: 
 
 
{---------------------------------------------------------------} 
{ Push Primary onto Stack } 
 
procedure Push(Size: char); 
begin 
   Move(Size, 'D0', '-(SP)'); 
end; 
{---------------------------------------------------------------} 
 
 
Now, let's take a look at functions Add  and  Subtract.    In the 
older versions of these routines, we let them call code generator 
routines PopAdd and PopSub.    We'll  continue  to do that, which 
makes the functions themselves extremely simple: 
 
 
{---------------------------------------------------------------} 
{ Recognize and Translate an Add } 
 
function Add(T1: char): char; 
begin 
   Match('+'); 
   Add := PopAdd(T1, Term); 
end; 
 
 
{-------------------------------------------------------------} 
{ Recognize and Translate a Subtract } 
 
function Subtract(T1: char): char; 
begin 
   Match('-'); 
   Subtract := PopSub(T1, Term); 
end; 
{---------------------------------------------------------------} 
 
 
The simplicity is  deceptive,  though, because what we've done is 
to defer all the logic to PopAdd and PopSub, which are  no longer 
just code generation routines.    They must also now take care of 
the type conversions required. 
 
And just what conversion is that?  Simple: Both arguments must be 
of the same size, and the result  is  also  of  that  size.   The 
smaller of the two arguments must be "promoted" to  the  size  of 



the larger one. 
 
But  this  presents a bit of a problem.  If the  argument  to  be 
promoted is the second argument  (i.e.  in  the  primary register 
D0), we  are  in  great  shape.  If it's not, however, we're in a 
fix: we can't change the size of the  information  that's already 
been pushed onto the stack. 
 
The solution is simple but a little painful: We must abandon that 
lovely  "pop  the  data and do something  with  it"  instructions 
thoughtfully provided by Motorola. 
 
The alternative is to assign  a  secondary  register,  which I've 
chosen to be R7.  (Why not R1?  Because I  have  later  plans for 
the other registers.) 
 
The  first  step in this new structure  is  to  introduce  a  Pop 
procedure analogous to the Push.   This procedure will always Pop 
the top element of the stack into D7: 
 
 
{---------------------------------------------------------------} 
{ Pop Stack into Secondary Register } 
 
procedure Pop(Size: char); 
begin 
   Move(Size, '(SP)+', 'D7'); 
end; 
{---------------------------------------------------------------} 
 
 
The general idea is that all the "Pop-Op" routines can  call this 
one.    When  this is done, we will then have  both  operands  in 
registers, so we can promote whichever  one  we need to.  To deal 
with this, procedure Convert needs another argument, the register 
name: 
 
 
{---------------------------------------------------------------} 
{ Convert a Data Item from One Type to Another } 
 
procedure Convert(Source, Dest: char; Reg: String); 
begin 
   if Source <> Dest then begin 
      if Source  = 'B' then 
         EmitLn('AND.W #$FF,' + Reg); 
      if Dest = 'L' then 
         EmitLn('EXT.L ' + Reg); 
   end; 
end; 
{---------------------------------------------------------------} 
 
 
The next function does a conversion, but only if the current type 
T1  is  smaller  in size than the desired  type  T2.    It  is  a 
function, returning the final type to let us know what it decided 
to do: 



 
 
{---------------------------------------------------------------} 
{ Promote the Size of a Register Value } 
 
function Promote(T1, T2: char; Reg: string): char; 
var Typ: char; 
begin 
   Typ := T1; 
   if T1 <> T2 then 
      if (T1 = 'B') or ((T1 = 'W') and (T2 = 'L')) then begin 
         Convert(T1, T2, Reg); 
         Typ := T2; 
      end; 
   Promote := Typ; 
end; 
{---------------------------------------------------------------} 
 
 
Finally, the following function forces the two registers to be of 
the same type: 
 
 
{---------------------------------------------------------------} 
{ Force both Arguments to Same Type } 
 
function SameType(T1, T2: char): char; 
begin 
   T1 := Promote(T1, T2, 'D7'); 
   SameType := Promote(T2, T1, 'D0'); 
end; 
{---------------------------------------------------------------} 
 
 
These new routines give us the ammunition we need  to  flesh  out 
PopAdd and PopSub: 
 
 
{---------------------------------------------------------------} 
{ Generate Code to Add Primary to the Stack } 
 
function PopAdd(T1, T2: char): char; 
begin 
   Pop(T1); 
   T2 := SameType(T1, T2); 
   GenAdd(T2); 
   PopAdd := T2; 
end; 
 
 
{---------------------------------------------------------------} 
{ Generate Code to Subtract Primary from the Stack } 
 
function PopSub(T1, T2: char): char; 
begin 
   Pop(T1); 
   T2 := SameType(T1, T2); 



   GenSub(T2); 
   PopSub := T2; 
end; 
{---------------------------------------------------------------} 
 
 
After  all   the   buildup,   the   final   results   are  almost 
anticlimactic.  Once  again,  you can see that the logic is quite 
simple.  All the two routines do is to pop the  top-of-stack into 
D7, force the two operands to be the same size, and then generate 
the code. 
 
Note  the  new  code generator routines GenAdd and GenSub.  These 
are vestigial forms of the ORIGINAL PopAdd and PopSub.   That is, 
they  are pure code generators, producing a  register-to-register 
add or subtract: 
 
 
{---------------------------------------------------------------} 
{ Add Top of Stack to Primary } 
 
procedure GenAdd(Size: char); 
begin 
   EmitLn('ADD.' + Size + ' D7,D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Subtract Primary from Top of Stack } 
 
procedure GenSub(Size: char); 
begin 
   EmitLn('SUB.' + Size + ' D7,D0'); 
   EmitLn('NEG.' + Size + ' D0'); 
end; 
{---------------------------------------------------------------} 
 
 
OK,  I grant you:  I've thrown a lot of routines at you since  we 
last tested the code.   But  you  have  to  admit  that  each new 
routine is pretty simple and transparent.  If you (like me) don't 
like to test so many new  routines  at  once, that's OK.  You can 
stub out routines like Convert, Promote, and SameType, since they 
don't  read  any inputs.  You won't  get  the  correct  code,  of 
course, but things should work.  Then flesh  them  out  one  at a 
time. 
 
When testing the program,  don't  forget  that  you first have to 
declare some variables, and then  start the "body" of the program 
with an upper-case  'B'  (for  BEGIN).   You should find that the 
parser  will  handle  any  additive  expressions.  Once  all  the 
conversion routines are in, you should see that the  correct code 
is  generated,  with  type  conversions inserted where necessary. 
Try mixing up variables  of  different  sizes, and also literals. 
Make sure that everything's working properly.  As  usual,  it's a 
good  idea  to  try  some  erroneous expressions and see how  the 
compiler handles them. 



 
 
WHY SO MANY PROCEDURES? 
 
At this point, you may think  I've  pretty much gone off the deep 
end in terms of deeply nested procedures.  There is  admittedly a 
lot of overhead here.  But there's a method in my madness.  As in 
the case of UnOp, I'm looking ahead to the time when  we're going 
to want better code  generation.   The way the code is organized, 
we can achieve  this  without major modifications to the program. 
For example, in cases where the value pushed onto the  stack does 
_NOT_ have to be converted, it's still better to use the "pop and 
add"  instruction.    If we choose to test for such cases, we can 
embed the extra tests into  PopAdd  and  PopSub  without changing 
anything else much. 
 
 
MULTIPLICATIVE EXPRESSIONS 
 
The procedure for dealing with multiplicative  operators  is much 
the  same.    In  fact,  at  the  first  level,  they are  almost 
identical, so I'll just show them here without much fanfare.  The 
first  one  is  our  general  form  for  Factor,  which  includes 
parenthetical subexpressions: 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Factor } 
 
function Expression: char; Forward; 
 
function Factor: char; 
begin 
   if Look = '(' then begin 
      Match('('); 
      Factor := Expression; 
      Match(')'); 
      end 
   else if IsAlpha(Look) then 
      Factor := Load(GetName) 
   else 
      Factor := LoadNum(GetNum); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Multiply } 
 
Function Multiply(T1: char): char; 
begin 
   Match('*'); 
   Multiply := PopMul(T1, Factor); 
end; 
 
 
{--------------------------------------------------------------} 
{ Recognize and Translate a Divide } 



 
function Divide(T1: char): char; 
begin 
   Match('/'); 
   DIvide := PopDiv(T1, Factor); 
end; 
 
 
{---------------------------------------------------------------} 
{ Parse and Translate a Math Term } 
 
function Term: char; 
var Typ: char; 
begin 
   Typ := Factor; 
   while IsMulop(Look) do begin 
      Push(Typ); 
      case Look of 
       '*': Typ := Multiply(Typ); 
       '/': Typ := Divide(Typ); 
      end; 
   end; 
   Term := Typ; 
end; 
{---------------------------------------------------------------} 
 
 
These routines parallel the additive  ones  almost  exactly.   As 
before, the complexity is encapsulated within PopMul  and PopDiv. 
If  you'd  like  to test the program before we get into that, you 
can build dummy versions of them, similar to  PopAdd  and PopSub. 
Again, the code won't be correct at this point,  but  the  parser 
should handle expressions of arbitrary complexity. 
 
 
MULTIPLICATION 
 
Once you've  convinced yourself that the parser itself is working 
properly, we need to figure out what it will take to generate the 
right code.  This is where  things  begin to get a little sticky, 
because the rules are more complex. 
 
Let's take the case of multiplication first.   This  operation is 
similar to the "addops" in that both operands should  be  of  the 
same size.  It differs in two important respects: 
 
 
  o  The type of the product is typically not the same as that of 
     the  two  operands.   For the product of two words, we get a 
     longword result. 
 
  o  The 68000 does  not support a 32 x 32 multiply, so a call to 
     a software routine is needed.  This routine will become part 
     of the run-time library. 
 
  o  It also does  not  support  an  8  x 8 multiply, so all byte 
     operands must be promoted to words. 



 
 
The actions that we have to take are best shown in  the following 
table: 
 
  T1 -->  |                 |                 |                 | 
          |                 |                 |                 | 
      |   |        B        |        W        |       L         | 
  T2  V   |                 |                 |                 | 
----------------------------------------------------------------- 
          |                 |                 |                 | 
                              
 
 
 
 
 
 
     B    | Convert D0 to W | Convert D0 to W | Convert D0 to L | 
          | Convert D7 to W |                 |                 | 
          | MULS            | MULS            | JSR MUL32       | 
          | Result = W      | Result = L      | Result = L      | 
          |                 |                 |                 | 
----------------------------------------------------------------- 
          |                 |                 |                 | 
     W    | Convert D7 to W |                 | Convert D0 to L | 
          | MULS            | MULS            | JSR MUL32       | 
          | Result = L      | Result = L      | Result = L      | 
          |                 |                 |                 | 
----------------------------------------------------------------- 
          |                 |                 |                 | 
     L    | Convert D7 to L | Convert D7 to L |                 | 
          | JSR MUL32       | JSR MUL32       | JSR MUL32       | 
          | Result = L      | Result = L      | Result = L      | 
          |                 |                 |                 | 
----------------------------------------------------------------- 
 
This table shows the actions to be taken for each  combination of 
operand types.  There are three things to note: First,  we assume 
a library routine  MUL32  which  performs  a  32  x  32 multiply, 
leaving a >> 32-bit << (not 64-bit) product.    If  there  is any 
overflow in the process,  we  choose to ignore it and return only 
the lower 32 bits. 
 
Second, note that the  table  is  symmetric  ... the two operands 
enter in the same way.  Finally, note that the product  is ALWAYS 
a longword, except when  both  operands  are  bytes.  (It's worth 
noting, in passing, that  this  means  that many expressions will 
end up being longwords, whether we  like  it or not.  Perhaps the 
idea  of  just  promoting  them  all  up  front wasn't  all  that 
outrageous, after all!) 
 
Now, clearly, we are going to have to generate different code for 
the 16-bit and 32-bit multiplies.  This is best  done  by  having 
separate code generator routines for the two cases: 
 
 



{---------------------------------------------------------------} 
{ Multiply Top of Stack by Primary (Word) } 
 
procedure GenMult; 
begin 
   EmitLn('MULS D7,D0') 
end; 
 
 
{---------------------------------------------------------------} 
{ Multiply Top of Stack by Primary (Long) } 
 
procedure GenLongMult; 
begin 
   EmitLn('JSR MUL32'); 
end; 
{---------------------------------------------------------------} 
 
 
An examination of the code below for PopMul  should  convince you 
that the conditions in the table are met: 
 
 
{---------------------------------------------------------------} 
{ Generate Code to Multiply Primary by Stack } 
 
function PopMul(T1, T2: char): char; 
var T: char; 
begin 
   Pop(T1); 
   T := SameType(T1, T2); 
   Convert(T, 'W', 'D7'); 
   Convert(T, 'W', 'D0'); 
   if T = 'L' then 
      GenLongMult 
   else 
      GenMult; 
   if T = 'B' then 
      PopMul := 'W' 
   else 
      PopMul:= 'L'; 
end; 
{---------------------------------------------------------------} 
 
 
As you can see, the routine starts off just like PopAdd.  The two 
arguments are forced to the same type.  The two calls  to Convert 
take  care  of  the case where both operands are bytes.  The data 
themselves are promoted  to  words, but the routine remembers the 
type so as to assign the correct type to the result.  Finally, we 
call one of the two code generator routines, and then  assign the 
result type.  Not too complicated, really. 
 
At this point, I suggest that you go ahead and test  the program. 
Try all combinations of operand sizes. 
 
 



DIVISION 
 
The case of division is not nearly so  symmetric.    I  also have 
some bad news for you: 
 
All  modern  16-bit   CPU's   support   integer   divide.     The 
manufacturer's data  sheet  will  describe  this  operation  as a 
32 x 16-bit divide, meaning that you can divide a 32-bit dividend 
by a 16-bit divisor.  Here's the bad news: 
 
 
                     THEY'RE LYING TO YOU!!! 
 
 
If you don't believe  it,  try  dividing  any large 32-bit number 
(meaning that it has non-zero bits  in  the upper 16 bits) by the 
integer 1.  You are guaranteed to get an overflow exception. 
 
The  problem is that the instruction  really  requires  that  the 
resulting quotient fit into a 16-bit result.   This  won't happen 
UNLESS the divisor is  sufficiently  large.    When any number is 
divided by unity, the quotient will of course be the same  as the 
dividend, which had better fit into a 16-bit word. 
 
Since  the  beginning  of  time  (well,  computers,  anyway), CPU 
architects have  provided  this  little  gotcha  in  the division 
circuitry.  It provides a certain amount of  symmetry  in things, 
since it is sort of the inverse of the way a multiply works.  But 
since  unity  is  a perfectly valid (and rather common) number to 
use as a divisor, the division as implemented  in  hardware needs 
some help from us programmers. 
 
The implications are as follows: 
 
  o  The type of the quotient must always be the same as  that of 
     the dividend.  It is independent of the divisor. 
 
  o  In spite of  the  fact  that  the  CPU  supports  a longword 
     dividend,  the hardware-provided  instruction  can  only  be 
     trusted  for  byte  and  word  dividends.      For  longword 
     dividends, we need another library routine that can return a 
     long result. 
 
 
 
This  looks  like  a job for  another  table,  to  summarize  the 
required actions: 
 
  T1 -->  |                 |                 |                 | 
          |                 |                 |                 | 
      |   |        B        |        W        |       L         | 
  T2  V   |                 |                 |                 | 
----------------------------------------------------------------- 
          |                 |                 |                 | 
     B    | Convert D0 to W | Convert D0 to W | Convert D0 to L | 
          | Convert D7 to L | Convert D7 to L |                 | 
          | DIVS            | DIVS            | JSR DIV32       | 



          | Result = B      | Result = W      | Result = L      | 
          |                 |                 |                 | 
----------------------------------------------------------------- 
          |                 |                 |                 | 
     W    | Convert D7 to L | Convert D7 to L | Convert D0 to L | 
          | DIVS            | DIVS            | JSR DIV32       | 
          | Result = B      | Result = W      | Result = L      | 
          |                 |                 |                 | 
----------------------------------------------------------------- 
          |                 |                 |                 | 
     L    | Convert D7 to L | Convert D7 to L |                 | 
          | JSR DIV32       | JSR DIV32       | JSR DIV32       | 
          | Result = B      | Result = W      | Result = L      | 
          |                 |                 |                 | 
----------------------------------------------------------------- 
 
 
(You may wonder why it's necessary to do a 32-bit  division, when 
the  dividend is, say, only a byte in the first place.  Since the 
number  of bits in the result can only be as many as that in  the 
dividend,  why  bother?   The reason is that, if the divisor is a 
longword,  and  there  are any high bits set in it, the result of 
the division must  be zero.  We might not get that if we only use 
the lower word of the divisor.) 
 
The following code provides the correct function for PopDiv: 
 
 
{---------------------------------------------------------------} 
{ Generate Code to Divide Stack by the Primary } 
 
function PopDiv(T1, T2: char): char; 
begin 
   Pop(T1); 
   Convert(T1, 'L', 'D7'); 
   if (T1 = 'L') or (T2 = 'L') then begin 
      Convert(T2, 'L', 'D0'); 
      GenLongDiv; 
      PopDiv := 'L'; 
      end 
   else begin 
      Convert(T2, 'W', 'D0'); 
      GenDiv; 
      PopDiv := T1; 
   end; 
end; 
{---------------------------------------------------------------} 
 
 
The two code generation procedures are: 
 
 
{---------------------------------------------------------------} 
{ Divide Top of Stack by Primary  (Word) } 
 
procedure GenDiv; 
begin 



   EmitLn('DIVS D0,D7'); 
   Move('W', 'D7', 'D0'); 
end; 
 
 
{---------------------------------------------------------------} 
{ Divide Top of Stack by Primary (Long) } 
 
procedure GenLongDiv; 
begin 
   EmitLn('JSR DIV32'); 
end; 
{---------------------------------------------------------------} 
 
 
Note  that  we  assume that DIV32 leaves the (longword) result in 
D0. 
 
OK, install the new  procedures  for division.  At this point you 
should be able  to  generate  code  for  any  kind  of arithmetic 
expression.  Give it a whirl! 
 
 
BEGINNING TO WIND DOWN 
 
At  last, in this installment, we've learned  how  to  deal  with 
variables (and literals) of different types.  As you can  see, it 
hasn't been too tough.  In  fact,  in  some ways most of the code 
looks even more simple than it does in earlier  programs.    Only 
the  multiplication  and  division  operators  require  a  little 
thinking and planning. 
 
The main concept that  made  things  easy  was that of converting 
procedures such as Expression into functions that return the type 
of the result.  Once this  was  done,  we were able to retain the 
same general structure of the compiler. 
 
I won't pretend that  we've  covered  every  single aspect of the 
issue.  I conveniently  ignored  unsigned  arithmetic.  From what 
we've  done, I think you can see that to include them adds no new 
challenges, just extra possibilities to test for. 
 
I've also ignored the  logical  operators And, Or, etc.  It turns 
out  that  these are pretty easy to  handle.    All  the  logical 
operators are  bitwise  operations,  so  they  are  symmetric and 
therefore work  in  the  same  fashion  as  PopAdd.  There is one 
difference,  however:    if  it  is necessary to extend the  word 
length for a logical variable, the extension should be done as an 
UNSIGNED  number.      Floating   point   numbers,   again,   are 
straightforward  to  handle  ... just a few more procedures to be 
added to the run-time library, or perhaps instructions for a math 
chip. 
 
Perhaps more importantly, I have also skirted the  issue  of type 
CHECKING,  as  opposed  to  conversion.   In other  words,  we've 
allowed for operations between variables of  all  combinations of 
types.  In general this will not be true ... certainly  you don't 



want to add an integer, for example, to a string.  Most languages 
also don't allow you to mix up character and integer variables. 
 
Again, there are  really  no  new  issues to be addressed in this 
case.  We are already checking the types of the two  operands ... 
much  of this checking gets done  in  procedures  like  SameType. 
It's  pretty  straightforward  to  include  a  call  to an  error 
handler, if the types of the two operands are incompatible. 
 
In the general  case,  we  can  think of every single operator as 
being handled by  a  different procedure, depending upon the type 
of the two operands.  This is straightforward, though tedious, to 
implement simply by implementing  a  jump  table with the operand 
types  as indices.  In Pascal,  the  equivalent  operation  would 
involve nested Case statements.    Some  of the called procedures 
could then be simple  error  routines,  while others could effect 
whatever kind of conversion we need.  As more  types  are  added, 
the number of procedures goes up by a square-law rule, but that's 
still not an unreasonably large number of procedures. 
 
What  we've  done  here is to collapse such a jump table into far 
fewer  procedures, simply by making use  of  symmetry  and  other 
simplifying rules. 
 
 
TO COERCE OR NOT TO COERCE 
 
In case you haven't gotten this message yet, it sure appears that 
TINY and KISS will  probably  _NOT_  be strongly typed languages, 
since I've allowed for  automatic  mixing  and conversion of just 
about any type.  Which brings up the next issue: 
 
                Is this really what we want to do? 
 
The answer depends on what kind of language you want, and the way 
you'd like it to behave.  What we have not addressed is the issue 
of when to allow and when to deny the use of operations involving 
different  data  types.   In other  words,  what  should  be  the 
SEMANTICS of our compiler?   Do we want automatic type conversion 
for all cases, for some cases, or not at all? 
 
Let's pause here to think about this a bit more.   To  do  so, it 
will help to look at a bit of history. 
 
FORTRAN  II supported only two simple  data  types:  Integer  and 
Real.    It  allowed implicit type conversion  between  real  and 
integer types during assignment, but not within expressions.  All 
data items (including literal constants) on  the  right-hand side 
of an assignment statement had to be of the same type.  That made 
things pretty easy  ...  much  simpler  than what we've had to do 
here. 
 
This  was  changed  in  FORTRAN   IV   to   support  "mixed-mode" 
arithmetic.  If an expression had any real data items in it, they 
were all converted to reals and the expression  itself  was real. 
To round out  the  picture, functions were provided to explicitly 
convert  from  one  type to the other, so that you could force an 



expression to end up as either type. 
 
This  led to two things:  code that was easier to write, and code 
that was less efficient.  That's because sloppy programmers would 
write expressions with simple  constants  like  0  and 1 in them, 
which  the  compiler  would  dutifully  compile  to   convert  at 
execution  time.  Still, the system  worked  pretty  well,  which 
would  tend  to  indicate that implicit type conversion is a Good 
Thing. 
 
C is also a weakly typed language, though it  supports  a  larger 
number  of types.  C won't complain if you try to add a character 
to an integer,  for  example.    Partly,  this is helped by the C 
convention of promoting every char  to integer when it is loaded, 
or  passed  through  a  parameter  list.    This  simplifies  the 
conversions quite a  bit.    In  fact, in subset C compilers that 
don't support long or float types,  we  end up back where we were 
in our earlier,  simple-minded  first try: every variable has the 
same representation, once loaded into  a  register.    Makes life 
pretty easy! 
 
The  ultimate  language  in  the  direction  of   automatic  type 
conversion is PL/I.   This  language  supports  a large number of 
data types, and you can mix them all  freely.    If  the implicit 
conversions of FORTRAN seemed good,  then  those  of  PL/I should 
have been Heaven, but it turned  out  to  be more like Hell!  The 
problem was that with so many data types, there had to be a large 
number  of  different conversions, AND  a  correspondingly  large 
number of rules about how  mixed  operands  should  be converted. 
These rules became so  complex  that  no  one could remember what 
they  were!  A lot of the errors in PL/I programs had to do  with 
unexpected and unwanted type  conversions.    Too  much of a Good 
Thing can be bad for you! 
 
Pascal,  on  the  other hand, is a  language  which  is "strongly 
typed," which means that in general you can't mix types,  even if 
they differ only in _NAME_, and yet have the same base type! 
Niklaus Wirth made Pascal strongly typed to help keep programmers 
out of trouble, and  the  restrictions  have  indeed saved many a 
programmer from himself, because the compiler kept him from doing 
something dumb.  Better  to  find  the  bug in compilation rather 
than  the  debug  phase.    The same restrictions can also  cause 
frustration when you really  WANT  to mix types, and they tend to 
drive an ex-C-programmer up the wall. 
 
Even so, Pascal does permit some implicit conversions.    You can 
assign  an integer to a real value.  You can also mix integer and 
real types in  expressions  of  type  Real.  The integers will be 
automatically coerced to real, just as in FORTRAN  (and  with the 
same hidden cost in run-time overhead). 
 
You can't, however, convert the  other way, from real to integer, 
without applying an explicit  conversion  function,  Trunc.   The 
theory here is that,  since  the numerical value of a real number 
is  necessarily  going  to  be  changed  by  the conversion  (the 
fractional  part will be lost), you really  shouldn't  do  it  in 
"secret." 



 
In the spirit of strong typing, Pascal will not allow you  to mix 
Char  and  Integer   variables,  without  applying  the  explicit 
coercion functions Chr and Ord. 
 
Turbo Pascal also includes the  types  Byte,  Word,  and LongInt. 
The first two are basically the same as unsigned  integers.    In 
Turbo,  these can be freely intermixed  with  variables  of  type 
Integer,  and  Turbo will automatically  handle  the  conversion. 
There are run-time  checks,  though, to keep you from overflowing 
or otherwise getting the wrong  answer. Note that you still can't 
mix Byte and Char types, even though they  are  stored internally 
in the same representation. 
 
The ultimate in a  strongly-typed  language  is Ada, which allows 
_NO_  implicit  type  conversions at all, and also will not allow 
mixed-mode  arithmetic.    Jean   Ichbiah's   position   is  that 
conversions cost  execution time, and you shouldn't be allowed to 
build in such cost in a hidden manner.  By forcing the programmer 
to  explicitly  request  a  type  conversion,  you  make it  more 
apparent that there could be a cost involved. 
 
I have been using another strongly-typed  language,  a delightful 
little  language  called  Whimsical,  by  John  Spray.   Although 
Whimsical is  intended as a systems programming language, it also 
requires explicit conversion EVERY time.    There  are  NEVER any 
automatic conversions, even the ones supported by Pascal. 
 
This approach does  have  certain advantages:  The compiler never 
has to guess what to do: the programmer always tells it precisely 
what  he  wants.  As a result, there tends to be  a  more  nearly 
one-to-one correspondence between  source code and compiled code, 
and John's compiler produces VERY tight code. 
 
On the other hand, I sometimes find the  explicit  conversions to 
be a pain.  If I want, for example, to add one to a character, or 
AND it with a mask, there are a lot of conversions to make.  If I 
get  it  wrong,  the  only   error  message  is  "Types  are  not 
compatible."  As it happens, John's particular  implementation of 
the language in his compiler doesn't tell you exactly WHICH types 
are not compatible ... it only tells you which LINE the  error is 
in. 
 
I must admit that most of my errors with this compiler tend to be 
errors of this type, and  I've  spent  a  lot  of  time  with the 
Whimsical compiler, trying to figure out just WHERE  in  the line 
I've offended it.   The only real way to fix the error is to keep 
trying things until something works. 
 
So what should we do in TINY and KISS?  For the first one, I have 
the answer:  TINY  will  support only the types Char and Integer, 
and  we'll  use  the  C  trick  of  promoting Chars  to  Integers 
internally.  That means  that  the  TINY  compiler will be _MUCH_ 
simpler  than  what  we've  already  done.    Type conversion  in 
expressions is sort of moot, since none will be required!   Since 
longwords will not be supported, we also won't need the MUL32 and 
DIV32 run-time routines, nor the logic to figure out when to call 



them.  I _LIKE_ it! 
 
KISS, on the other hand, will support the type Long. 
 
Should it support both signed and unsigned arithmetic?    For the 
sake of simplicity I'd rather not.    It  does add quite a bit to 
the  complexity  of  type conversions.  Even  Niklaus  Wirth  has 
eliminated  unsigned  (Cardinal) numbers from  his  new  language 
Oberon, with the argument that  32-bit  integers  should  be long 
enough for anybody, in either case. 
 
But KISS is supposed to  be a systems programming language, which 
means that we should  be  able to do whatever operations that can 
be done in assembler.    Since the 68000 supports both flavors of 
integers, I guess KISS  should,  also.    We've seen that logical 
operations  need to be able to extend  integers  in  an  unsigned 
fashion, so the unsigned conversion  procedures  are  required in 
any case. 
 
 
CONCLUSION 
 
That wraps up our session on type conversions.  Sorry you  had to 
wait  so  long for it, but hope you feel that it  was  worth  the 
wait. 
 
In  the  next  few installments, we'll extend the simple types to 
include arrays and pointers, and we'll have a look at what  to do 
about  strings.    That should pretty well wrap up the mainstream 
part of the series.  After  that,  I'll give you the new versions 
of the TINY and KISS compilers,  and  then we'll start to look at 
optimization issues. 
 
See you then. 
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INTRODUCTION 
 
Can it really have been four years since I wrote installment  
fourteen of this series?  Is it really possible that six long  
years have passed since I began it?  Funny how time flies when  
you're having fun, isn't it?   
 
I won't spend a lot of time making excuses; only point out that  
things happen, and priorities change.  In the four years since  
installment fourteen, I've managed to get laid off, get divorced,  
have a nervous breakdown, begin a new career as a writer, begin  
another one as a consultant, move, work on two real-time systems,  
and raise fourteen baby birds, three pigeons, six possums, and a  
duck.  For awhile there, the parsing of source code was not high  
on my list of priorities.  Neither was writing stuff for free,  
instead of writing stuff for pay.  But I do try to be faithful,  



and I do recognize and feel my responsibility to you, the reader,  
to finish what I've started.  As the tortoise said in one of my  
son's old stories, I may be slow, but I'm sure.  I'm  sure that  
there are people out there anxious to see the last reel of this  
film, and I intend to give it to them.  So, if you're one of those  
who's been waiting, more or less patiently, to see how this thing  
comes out, thanks for your patience.  I apologize for the delay.   
Let's move on. 
 
 
NEW STARTS, OLD DIRECTIONS 
 
Like many other things, programming languages and programming  
styles change with time.  In 1994, it seems a little anachronistic  
to be programming in Turbo Pascal, when the rest of the world  
seems  to have gone bananas over C++.  It also seems a little  
strange to be programming in a classical style when the rest of  
the world has switched to object-oriented methods.  Still, in  
spite of the four-year hiatus, it would be entirely too wrenching  
a change, at this point, to switch to, say, C++ with object- 
orientation .  Anyway, Pascal is still not only a powerful  
programming language (more than ever, in fact), but it's a  
wonderful medium for teaching.  C is a notoriously difficult  
language to read ... it's often been accused, along with Forth, of  
being a "write-only language."  When I program in C++, I find  
myself spending at least 50% of my time struggling with language  
syntax rather than with concepts.  A stray "&" or "*" can not only  
change the functioning of the program, but its correctness as  
well.  By contrast, Pascal code is usually quite transparent and  
easy to read, even if you don't know the language. What you see is  
almost always what you get, and we can concentrate on concepts  
rather than implementation details.  I've said from the beginning  
that the purpose of this tutorial series was not to generate the  
world's fastest compiler, but to teach the fundamentals of  
compiler technology, while spending the least amount of time  
wrestling with language syntax or other aspects of software  
implementation. Finally, since a lot of what we do in this course  
amounts to software experimentation, it's important to have a  
compiler and associated environment that compiles quickly and with  
no fuss.  In my opinion, by far the most significant time measure  
in software development is the speed of the edit/compile/test  
cycle.  In this department, Turbo Pascal is king.  The compilation  
speed is blazing fast, and continues to get faster in every  
release (how do they keep doing that?).  Despite vast improvements  
in C compilation speed over the years, even Borland's fastest  
C/C++ compiler is still no match for Turbo Pascal.  Further, the  
editor built into their IDE, the make facility, and even their  
superb smart linker, all complement each other to produce a  
wonderful environment for quick turnaround.  For all of these  
reasons, I intend to stick with Pascal for the duration of this  
series. We'll be using Turbo Pascal for Windows, one of the  
compilers provided Borland Pascal with Objects, version 7.0.  If  
you don't have this compiler, don't worry ... nothing we do here  
is going to count on your having the latest version. Using the  
Windows version helps me a lot, by allowing me to use the  
Clipboard to copy code from the compiler's editor into these  
documents.  It should also help you at least as much, copying the  



code in the other direction.   
 
I've thought long and hard about whether or not to introduce  
objects to our discussion.  I'm a big advocate of object-oriented  
methods for all uses, and such methods definitely have their place  
in compiler technology.  In fact, I've written papers on just this  
subject (Refs. 1-3).  But the architecture of a compiler which is  
based on object-oriented approaches is vastly different than that  
of the more classical compiler we've been building.  Again, it  
would seem to be entirely too much to change these horses in mid- 
stream.  As I said, programming styles change.  Who knows, it may  
be another six years before we finish this thing, and if we keep  
changing the code every time programming style changes, we may  
NEVER finish. 
 
So for now, at least, I've determined to continue the classical  
style in Pascal, though we might indeed discuss objects and object  
orientation as we go.  Likewise, the target machine will remain  
the Motorola 68000 family.  Of all the decisions to be made here,  
this one has been the easiest.  Though I know that many of you  
would like to see code for the 80x86, the 68000 has become, if  
anything, even more popular as a platform for embedded systems,  
and it's to that application that this whole effort began in the  
first place.  Compiling for the PC, MSDOS platform, we'd have to  
deal with all the issues of DOS system calls, DOS linker formats,  
the PC file system and hardware, and all those other complications  
of a DOS environment.  An embedded system, on the other hand, must  
run standalone, and it's for this kind of application, as an  
alternative to assembly language, that I've always imagined that a  
language like KISS would thrive. Anyway, who wants to deal with  
the 80x86 architecture if they don't have to? 
 
The one feature of Turbo Pascal that I'm going to be making heavy  
use of is units.  In the past, we've had to make compromises  
between code size and complexity, and program functionality.  A  
lot of our work has been in the nature of computer  
experimentation, looking at only one aspect of compiler technology  
at a time. We did this to avoid to avoid having to carry around  
large programs, just to investigate simple concepts.  In the  
process, we've re-invented the wheel and re-programmed the same  
functions more times than I'd like to count.  Turbo units provide  
a wonderful way to get functionality and simplicity at the same  
time:  You write reusable code, and invoke it with a single line.   
Your test program stays small, but it can do powerful things. 
 
One feature of Turbo Pascal units is their initialization block.   
As with an Ada package, any code in the main begin-end block of a  
unit gets executed as the program is initialized.  As you'll see  
later, this sometimes gives us neat simplifications in the code.   
Our procedure Init, which has been with us since Installment 1,  
goes away entirely when we use units.  The various routines in the  
Cradle, another key features of our approach, will get distributed  
among the units. 
 
The concept of units, of course, is no different than that of C  
modules.  However, in C (and C++), the interface between modules  
comes via preprocessor include statements and header files.  As  



someone who's had to read a lot of other people's C programs, I've  
always found this rather bewildering.  It always seems that  
whatever data structure you'd like to know about is in some other  
file.  Turbo units are simpler for the very reason that they're  
criticized by some:  The function interfaces and their  
implementation are included in the same file.  While this  
organization may create problems with code security, it also  
reduces the number of files by half, which isn't half bad.   
Linking of the object files is also easy, because the Turbo  
compiler takes care of it without the need for make files or other  
mechanisms. 
 
 
STARTING OVER? 
 
Four years ago, in Installment 14, I promised you that our days of  
re-inventing the wheel, and recoding the same software over and  
over for each lesson, were over, and that from now on we'd stick  
to more complete programs that we would simply add new features  
to.  I still intend to keep that promise; that's one of the main  
purposes for using units.  However, because of the long time since  
Installment 14, it's natural to want to at least do some review,  
and anyhow, we're going to have to make rather sweeping changes in  
the code to make the transition to units.  Besides, frankly, after  
all this time I can't remember all the neat ideas I had in my head  
four years ago.  The best way for me to recall them is to retrace  
some of the steps we took to arrive at Installment 14.  So I hope  
you'll be understanding and bear with me as we go back to our  
roots, in a sense, and rebuild the core of the software,  
distributing the routines among the various units, and  
bootstrapping ourselves back up to the point we were at lo, those  
many moons ago. As has always been the case, you're going to get   
to see me make all the mistakes and execute changes of direction,  
in real time.  Please bear with me ... we'll start getting to the  
new stuff before you know it. 
 
Since we're going to be using multiple modules in our new  
approach, we have to address the issue of file management.  If  
you've followed all the other sections of this tutorial, you know  
that, as our programs evolve, we're going to be replacing older,  
more simple-minded units with more capable ones. This brings us to  
an issue of version control. There will almost certainly be times  
when we will overlay a simple file (unit), but later wish we had  
the simple one again.  A case in point is embodied in our  
predilection for using single-character variable names, keywords,  
etc., to test concepts without getting bogged down in the details  
of a lexical scanner.  Thanks to the use of units, we will be  
doing much less of this in the future.  Still, I not only suspect,  
but am certain that we will need to save some older versions of  
files, for special purposes, even though they've been replaced by  
newer, more capable ones. 
 
To deal with this problem, I suggest that you create different  
directories, with different versions of the units as needed.  If  
we do this properly, the code in each directory will remain self- 
consistent.  I've tentatively created four directories:  SINGLE  
(for single-character experimentation), MULTI (for, of course,  



multi-character versions), TINY, and KISS. 
 
Enough said about philosophy and details.  Let's get on with the  
resurrection of the software. 
 
 
THE INPUT UNIT 
 
A key concept that we've used since Day 1 has been the idea of an  
input stream with one lookahead character.  All the parsing  
routines examine this character, without changing it, to decide  
what they should do next.  (Compare this approach with the C/Unix  
approach using getchar and unget, and I think you'll agree that  
our approach is simpler). We'll begin our hike into the future by  
translating this concept into our new, unit-based organization.   
The first unit, appropriately called Input, is shown below: 
 
 
{--------------------------------------------------------------} 
unit Input; 
{--------------------------------------------------------------} 
interface 
var Look: char;               { Lookahead character } 
procedure GetChar;            { Read new character  } 
 
{--------------------------------------------------------------} 
implementation 
 
{--------------------------------------------------------------} 
{ Read New Character From Input Stream } 
 
procedure GetChar; 
begin 
 Read(Look); 
end; 
 
{--------------------------------------------------------------} 
{ Unit Initialization } 
begin 
 GetChar; 
end. 
{--------------------------------------------------------------} 
 
 
As you can see, there's nothing very profound, and certainly  
nothing complicated, about this unit, since it consists of only a  
single procedure.  But already, we can see how the use of units  
gives us advantages.  Note the executable code in the  
initialization block.  This code "primes the pump" of the input  
stream for us, something we've always had to do before, by  
inserting the call to GetChar in line, or in procedure Init.  This  
time, the call happens without any special reference to it on our  
part, except within the unit itself. As I predicted earlier, this  
mechanism is going to make our lives much simpler as we proceed. 
I consider it to be one of the most useful features of Turbo  
Pascal, and I lean on it heavily.  
 



Copy this unit into your compiler's IDE, and compile it. To test  
the software, of course, we always need a main program.  I used  
the following, really complex test program, which we'll later  
evolve into the Main for our compiler: 
 
 
{--------------------------------------------------------------} 
program Main; 
uses WinCRT, Input; 
begin 
 WriteLn(Look); 
end. 
{--------------------------------------------------------------} 
 
 
Note the use of the Borland-supplied unit, WinCRT.  This unit is  
necessary if you intend to use the standard Pascal I/O routines,  
Read, ReadLn, Write, and WriteLn, which of course we intend to do. 
If you forget to include this unit in the "uses" clause, you will  
get a really bizarre and indecipherable error message at run time. 
 
Note also that we can access the lookahead character, even though  
it's not declared in the main program.  All variables declared  
within the interface section of a unit are global, but they're  
hidden from prying eyes; to that extent, we get a modicum of  
information hiding.  Of course, if we were writing in an object- 
oriented fashion, we should not allow outside modules to access  
the units internal variables.  But, although Turbo units have a  
lot in common with objects, we're not doing object-oriented design  
or code here, so our use of Look is appropriate. 
 
Go ahead and save the test program as Main.pas.  To make life  
easier as we get more and more files, you might want to take this  
opportunity to declare this file as the compiler's Primary file.   
That way, you can execute the program from any file.  Otherwise,  
if you press Cntl-F9 to compile and run from one of the units,  
you'll get an error message.  You set the primary file using the  
main submenu, "Compile," in the Turbo IDE. 
 
I hasten to point out, as I've done before, that the function of  
unit Input is, and always has been, considered to be a dummy  
version of the real thing.  In a production version of a compiler,  
the input stream will, of course, come from a file rather than  
from the keyboard.  And it will almost certainly include line  
buffering, at the very least, and more likely, a rather large text  
buffer to support efficient disk I/O.  The nice part about the  
unit approach is that, as with objects, we can modify the code in  
the unit to be as simple or as sophisticated as we like. As long  
as the interface, as embodied in the public procedures and the  
lookahead character, don't change, the rest of the program is  
totally unaffected.  And since units are compiled, rather than  
merely included, the time required to link with them is virtually  
nil.  Again, the result is that we can get all the benefits of  
sophisticated implementations, without having to carry the code  
around as so much baggage. 
 
In later installments, I intend to provide a full-blown IDE for  



the KISS compiler, using a true Windows application generated by  
Borland's OWL applications framework.  For now, though, we'll obey  
my #1 rule to live by:  Keep It Simple. 
 
 
 
THE OUTPUT UNIT 
 
Of course, every decent program should have output, and ours is no  
exception.  Our output routines included the Emit functions.  The  
code for the corresponding output unit is shown next: 
 
 
{--------------------------------------------------------------} 
unit Output; 
{--------------------------------------------------------------} 
interface 
procedure Emit(s: string);   { Emit an instruction  } 
procedure EmitLn(s: string);  { Emit an instruction line } 
 
{--------------------------------------------------------------} 
implementation 
const TAB = ^I; 
 
{--------------------------------------------------------------} 
{ Emit an Instruction } 
 
procedure Emit(s: string); 
begin 
 Write(TAB, s); 
end; 
 
{--------------------------------------------------------------} 
{ Emit an Instruction, Followed By a Newline } 
 
procedure EmitLn(s: string); 
begin 
 Emit(s); 
 WriteLn; 
end; 
 
end. 
{--------------------------------------------------------------} 
 
 
(Notice that this unit has no initialization clause, so it needs  
no begin-block.) 
  
Test this unit with the following main program: 
 
{--------------------------------------------------------------} 
program Test; 
uses WinCRT, Input, Output, Scanner, Parser; 
begin 
 WriteLn('MAIN:"); 
 EmitLn('Hello, world!'); 
end. 



{--------------------------------------------------------------} 
 
Did you see anything that surprised you?  You may have been  
surprised to see that you needed to type something, even though  
the main program requires no input.  That's because of the  
initialization in unit Input, which still requires something to  
put into the lookahead character.  Sorry, there's no way out of  
that box, or rather, we don't _WANT_ to get out. Except for simple  
test cases such as this, we will always want a valid lookahead  
character, so the right thing to do about this "problem" is ...  
nothing. 
 
Perhaps more surprisingly, notice that the TAB character had no  
effect; our line of "instructions" begins at column 1, same as the  
fake label.  That's right:  WinCRT doesn't support tabs. We have a  
problem. 
 
There are a few ways we can deal with this problem. The one thing  
we can't do is to simply ignore it.  Every assembler I've ever  
used reserves column 1 for labels, and will rebel to see  
instructions starting there.  So, at the very least, we must space  
the instructions over one column to keep the assembler happy.  .   
That's easy enough to do:  Simply change, in procedure Emit, the  
line: 
 
 Write(TAB, s); 
  
by: 
 
 Write(' ', s); 
 
I must admit that I've wrestled with this problem before, and find  
myself changing my mind as often as a chameleon changes color.   
For the purposes we're going to be using, 99% of which will be  
examining the output code as it's displayed on a CRT, it would be  
nice to see neatly blocked out "object" code.  The line: 
 
SUB1:  MOVE #4,D0 
 
just plain looks neater than the different, but functionally  
identical code, 
 
SUB1: 
 MOVE #4,D0 
 
In test versions of my code, I included a more sophisticated  
version of the procedure PostLabel, that avoids having labels on  
separate lines, but rather defers the printing of a label so it  
can end up on the same line as the associated instruction.  As  
recently as an hour ago, my version of unit Output provided full  
support for tabs, using an internal column count variable and  
software to manage it.  I had, if I do say so myself, some rather  
elegant code to support the tab mechanism, with a minimum of code  
bloat. It was awfully tempting to show you the "prettyprint"  
version, if for no other reason than to show off the elegance. 
 
Nevertheless, the code of the "elegant" version was considerably  



more complex and larger.  Since then, I've had second thoughts. In  
spite of our desire to see pretty output, the inescapable fact is  
that the two versions of the MAIN: code fragment shown above are  
functionally identical; the assembler, which is the ultimate  
destination of the code, couldn't care less which version it gets,  
except that the prettier version will contain more characters,  
therefore will use more disk space and take longer to assemble.    
but the prettier one not only takes more code to generate, but  
will create a larger output file, with many more space characters  
than the minimum needed.  When you look at it that way, it's not  
very hard to decide which approach to use, is it? 
 
What finally clinched the issue for me was a reminder to consider  
my own first commandment: KISS.  Although I was pretty proud of  
all my elegant little tricks to implement tabbing, I had to remind  
myself that, to paraphrase Senator Barry Goldwater, elegance in  
the pursuit of complexity is no virtue.  Another wise man once  
wrote, "Any idiot can design a Rolls-Royce. It takes a genius to  
design a VW."  So the elegant, tab-friendly version of Output is  
history, and what you see is the simple, compact, VW version. 
 
 
THE ERROR UNIT 
 
Our next set of routines are those that handle errors.  To refresh  
your memory, we take the approach, pioneered by Borland in Turbo  
Pascal, of halting on the first error.  Not only does this greatly  
simplify our code, by completely avoiding the sticky issue of  
error recovery, but it also makes much more sense, in my opinion,  
in an interactive environment.  I know this may be an extreme  
position, but I consider the practice of reporting all errors in a  
program to be an anachronism, a holdover from the days of batch  
processing.  It's time to scuttle the practice.  So there. 
 
In our original Cradle, we had two error-handling procedures:  
Error, which didn't halt, and Abort, which did.  But I don't think  
we ever found a use for the procedure that didn't halt, so in the  
new, lean and mean unit Errors, shown next, procedure Error takes  
the place of Abort. 
 
 
{--------------------------------------------------------------} 
unit Errors; 
{--------------------------------------------------------------} 
interface 
procedure Error(s: string); 
procedure Expected(s: string); 
 
{--------------------------------------------------------------} 
implementation 
 
{--------------------------------------------------------------} 
{ Write error Message and Halt } 
 
procedure Error(s: string); 
begin 
 WriteLn; 



 WriteLn(^G, 'Error: ', s, '.'); 
 Halt; 
end; 
 
{--------------------------------------------------------------} 
{ Write "<something> Expected" } 
 
procedure Expected(s: string); 
begin 
 Error(s + ' Expected'); 
end; 
 
end. 
{--------------------------------------------------------------} 
 
 
As usual, here's a test program: 
 
 
 
 
{--------------------------------------------------------------} 
program Test; 
uses WinCRT, Input, Output, Errors; 
 
begin 
 Expected('Integer'); 
end. 
{--------------------------------------------------------------} 
 
Have you noticed that the "uses" line in our main program keeps  
getting longer?  That's OK. In the final version, the main program  
will only call procedures in our parser, so its use clause will  
only have a couple of entries. But for now, it's probably best to  
include all the units so we can test procedures in them. 
 
 
SCANNING AND PARSING 
 
The classical compiler architecture consists of separate modules  
for the lexical scanner, which supplies tokens in the language,  
and the parser, which tries to make sense of the tokens as syntax  
elements.  If you can still remember what we did in earlier  
installments, you'll recall that we didn't do things that way.   
Because we're using a predictive parser, we can almost always tell  
what language element is coming next, just by examining the  
lookahead character.  Therefore, we found no need to prefetch  
tokens, as a scanner would do. 
 
But, even though there is no functional procedure called  
"Scanner," it still makes sense to separate the scanning functions  
from the parsing functions.  So I've created two more units  
called, amazingly enough, Scanner and Parser.  The Scanner unit  
contains all of the routines known as recognizers.  Some of these,  
such as IsAlpha, are pure boolean routines which operate on the  
lookahead character only.  The other routines are those which  
collect tokens, such as identifiers and numeric constants. The  



Parser unit will contain all of the routines making up the  
recursive-descent parser.  The general rule should be that unit  
Parser contains all of the information that is language-specific;  
in other words, the syntax of the language should be wholly  
contained in Parser.  In an ideal world, this rule should be true  
to the extent that we can change the compiler to compile a  
different language, merely by replacing the single unit, Parser.  
 
In practice, things are almost never this pure.  There's always a  
small amount of "leakage" of syntax rules into the scanner as  
well.  For example, the rules concerning what makes up a legal  
identifier or constant may vary from language to language.  In  
some languages, the rules concerning comments permit them to be  
filtered by the scanner, while in others they do not. So in  
practice, both units are likely to end up having language- 
dependent components, but the changes required to the scanner  
should be relatively trivial.  
 
Now, recall that we've used two versions of the scanner routines:  
One that handled only single-character tokens, which we used for a  
number of our tests, and another that provided full support for  
multi-character tokens.  Now that we have our software separated  
into units, I don't anticipate getting much use out of the single- 
character version, but it doesn't cost us much to provide for  
both.  I've created two versions of the Scanner unit.  The first  
one, called Scanner1, contains the single-digit version of the  
recognizers: 
 
 
{--------------------------------------------------------------} 
unit Scanner1; 
{--------------------------------------------------------------} 
interface 
uses Input, Errors; 
 
function IsAlpha(c: char): boolean; 
function IsDigit(c: char): boolean; 
function IsAlNum(c: char): boolean; 
function IsAddop(c: char): boolean; 
function IsMulop(c: char): boolean; 
 
procedure Match(x: char); 
function GetName: char; 
function GetNumber: char; 
 
{--------------------------------------------------------------} 
implementation 
 
{--------------------------------------------------------------} 
{ Recognize an Alpha Character } 
 
function IsAlpha(c: char): boolean; 
begin 
 IsAlpha := UpCase(c) in ['A'..'Z']; 
end; 
 
{--------------------------------------------------------------} 



{ Recognize a Numeric Character } 
 
function IsDigit(c: char): boolean; 
begin 
 IsDigit := c in ['0'..'9']; 
end; 
 
{--------------------------------------------------------------} 
{ Recognize an Alphanumeric Character } 
 
function IsAlnum(c: char): boolean; 
begin 
 IsAlnum := IsAlpha(c) or IsDigit(c); 
end; 
 
{--------------------------------------------------------------} 
{ Recognize an Addition Operator } 
 
function IsAddop(c: char): boolean; 
begin 
 IsAddop := c in ['+','-']; 
end; 
 
{--------------------------------------------------------------} 
{ Recognize a Multiplication Operator } 
 
function IsMulop(c: char): boolean; 
begin 
 IsMulop := c in ['*','/']; 
end; 
 
{--------------------------------------------------------------} 
{ Match One Character } 
 
procedure Match(x: char); 
begin 
 if Look = x then GetChar 
 else Expected('''' + x + ''''); 
end; 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
function GetName: char; 
begin 
 if not IsAlpha(Look) then Expected('Name'); 
 GetName := UpCase(Look); 
 GetChar; 
end; 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNumber: char; 
begin 
 if not IsDigit(Look) then Expected('Integer'); 
 GetNumber := Look; 



 GetChar; 
end; 
 
end. 
{--------------------------------------------------------------} 
 
 
The following code fragment of the main program provides a good  
test of the scanner.  For brevity, I'll only include the  
executable code here; the rest remains the same.  Don't forget,  
though, to add the name Scanner1 to the "uses" clause. 
 
 Write(GetName); 
 Match('='); 
 Write(GetNumber); 
 Match('+'); 
 WriteLn(GetName); 
 
This code will recognize all sentences of the form: 
 
 x=0+y 
 
where x and y can be any single-character variable names, and 0  
any digit.  The code should reject all other sentences, and give a  
meaningful error message. If it did, you're in good shape and we  
can proceed. 
 
 
THE SCANNER UNIT 
 
The next, and by far the most important, version of the scanner is  
the one that handles the multi-character tokens that all real  
languages must have.  Only the two functions, GetName and  
GetNumber, change between the two units, but just to be sure there  
are no mistakes, I've reproduced the entire unit here.  This is  
unit Scanner: 
 
 
{--------------------------------------------------------------} 
unit Scanner; 
{--------------------------------------------------------------} 
interface 
uses Input, Errors; 
 
function IsAlpha(c: char): boolean; 
function IsDigit(c: char): boolean; 
function IsAlNum(c: char): boolean; 
function IsAddop(c: char): boolean; 
function IsMulop(c: char): boolean; 
 
procedure Match(x: char); 
function GetName: string; 
function GetNumber: longint; 
 
{--------------------------------------------------------------} 
implementation 
 



{--------------------------------------------------------------} 
{ Recognize an Alpha Character } 
 
function IsAlpha(c: char): boolean; 
begin 
 IsAlpha := UpCase(c) in ['A'..'Z']; 
end; 
 
{--------------------------------------------------------------} 
{ Recognize a Numeric Character } 
 
function IsDigit(c: char): boolean; 
begin 
 IsDigit := c in ['0'..'9']; 
end; 
 
{--------------------------------------------------------------} 
{ Recognize an Alphanumeric Character } 
 
function IsAlnum(c: char): boolean; 
begin 
 IsAlnum := IsAlpha(c) or IsDigit(c); 
end; 
 
{--------------------------------------------------------------} 
{ Recognize an Addition Operator } 
 
function IsAddop(c: char): boolean; 
begin 
 IsAddop := c in ['+','-']; 
end; 
 
{--------------------------------------------------------------} 
{ Recognize a Multiplication Operator } 
 
function IsMulop(c: char): boolean; 
begin 
 IsMulop := c in ['*','/']; 
end; 
 
{--------------------------------------------------------------} 
{ Match One Character } 
 
procedure Match(x: char); 
begin 
 if Look = x then GetChar 
 else Expected('''' + x + ''''); 
end; 
 
{--------------------------------------------------------------} 
{ Get an Identifier } 
 
function GetName: string; 
var n: string; 
begin 
 n := ''; 
 if not IsAlpha(Look) then Expected('Name'); 



 while IsAlnum(Look) do begin 
  n := n + Look; 
  GetChar; 
 end; 
 GetName := n; 
end; 
 
{--------------------------------------------------------------} 
{ Get a Number } 
 
function GetNumber: string; 
var n: string; 
begin 
 n := ''; 
 if not IsDigit(Look) then Expected('Integer'); 
 while IsDigit(Look) do begin 
  n := n + Look; 
  GetChar; 
 end; 
 GetNumber := n; 
end; 
 
end. 
{--------------------------------------------------------------} 
 
 
The same test program will test this scanner, also. Simply change  
the "uses" clause to use Scanner instead of Scanner1.  Now you  
should be able to type multi-character names and numbers. 
 
 
DECISIONS, DECISIONS 
 
In spite of the relative simplicity of both scanners, a lot of  
thought has gone into them, and a lot of decisions had to be made.   
I'd like to share those thoughts with you now so you can make your  
own educated decision, appropriate for your application.  First,  
note that both versions of GetName translate the input characters  
to upper case.  Obviously, there was a design decision made here,  
and this is one of those cases where the language syntax splatters  
over into the scanner.  In the C language, the case of characters  
in identifiers is significant.  For such a language, we obviously  
can't map the characters to upper case.  The design I'm using  
assumes a language like Pascal, where the case of characters  
doesn't matter.  For such languages, it's easier to go ahead and  
map all identifiers to upper case in the scanner, so we don't have  
to worry later on when we're comparing strings for equality. 
 
We could have even gone a step further, and map the characters to  
upper case right as they come in, in GetChar.  This approach works  
too, and I've used it in the past, but it's too confining.  
Specifically, it will also map characters that may be part of  
quoted strings, which is not a good idea.  So if you're going to  
map to upper case at all, GetName is the proper place to do it. 
 
Note that the function GetNumber in this scanner returns a string,  
just as GetName does.  This is another one of those things I've  



oscillated about almost daily, and the last swing was all of ten  
minutes ago.  The alternative approach, and one I've used many  
times in past installments, returns an integer result. 
 
Both approaches have their good points. Since we're fetching a  
number, the approach that immediately comes to mind is to return  
it as an integer.  But bear in mind that the eventual use of the  
number will be in a write statement that goes back to the outside  
world.  Someone -- either us or the code hidden inside the write  
statement -- is going to have to convert the number back to a  
string again.  Turbo Pascal includes such string conversion  
routines, but why use them if we don't have to?  Why convert a  
number from string to integer form, only to convert it right back  
again in the code generator, only a few statements later? 
 
Furthermore, as you'll soon see, we're going to need a temporary  
storage spot for the value of the token we've fetched. If we treat  
the number in its string form, we can store the value of either a  
variable or a number in the same string.  Otherwise, we'll have to  
create a second, integer variable. 
 
On the other hand, we'll find that carrying the number as a string  
virtually eliminates any chance of optimization later on.  As we  
get to the point where we are beginning to concern ourselves with  
code generation, we'll encounter cases in which we're doing  
arithmetic on constants.  For such cases, it's really foolish to  
generate code that performs the constant arithmetic at run time.   
Far better to let the parser do the arithmetic at compile time,  
and merely code the result.  To do that, we'll wish we had the  
constants stored as integers rather than strings. 
 
What finally swung me back over to the string approach was an  
aggressive application of the KISS test, plus reminding myself  
that we've studiously avoided issues of code efficiency.  One of  
the things that makes our simple-minded parsing work, without the  
complexities of a "real" compiler, is that we've said up front  
that we aren't concerned about code efficiency.  That gives us a  
lot of freedom to do things the easy way rather than the efficient  
one, and it's a freedom we must be careful not to abandon  
voluntarily, in spite of the urges for efficiency shouting in our  
ear.  In addition to being a big believer in the KISS philosophy,  
I'm also an advocate of "lazy programming," which in this context  
means, don't program anything until you need it.  As P.J. Plauger  
says, "Never put off until tomorrow what you can put off  
indefinitely."  Over the years, much code has been written to  
provide for eventualities that never happened.  I've learned that  
lesson myself, from bitter experience.  So the bottom line is:  We  
won't convert to an integer here because we don't need to.  It's  
as simple as that. 
 
For those of you who still think we may need the integer version  
(and indeed we may), here it is: 
 
 
{--------------------------------------------------------------} 
{ Get a Number (integer version) } 
 



function GetNumber: longint; 
var n: longint; 
begin 
 n := 0; 
 if not IsDigit(Look) then Expected('Integer'); 
 while IsDigit(Look) do begin 
  n := 10 * n + (Ord(Look) - Ord('0')); 
  GetChar; 
 end; 
 GetNumber := n; 
end; 
{--------------------------------------------------------------} 
 
You might file this one away, as I intend to, for a rainy day. 
 
 
PARSING 
 
At this point, we have distributed all the routines that made up  
our Cradle into units that we can draw upon as we need them.   
Obviously, they will evolve further as we continue the process of  
bootstrapping ourselves up again, but for the most part their  
content, and certainly the architecture that they imply, is  
defined.  What remains is to embody the language syntax into the  
parser unit.  We won't do much of that in this installment, but I  
do want to do a little, just to leave us with the good feeling  
that we still know what we're doing.  So before we go, let's  
generate just enough of a parser to process single factors in an  
expression.  In the process, we'll also, by necessity, find we  
have created a code generator unit, as well. 
 
Remember the very first installment of this series?  We read an  
integer value, say n, and generated the code to load it into the  
D0 register via an immediate move: 
 
 MOVE #n,D0 
 
Shortly afterwards, we repeated the process for a variable,  
 
 MOVE X(PC),D0 
 
and then for a factor that could be either constant or variable. 
For old times sake, let's revisit that process.  Define the  
following new unit: 
 
 
{--------------------------------------------------------------} 
unit Parser; 
{--------------------------------------------------------------} 
interface 
uses Input, Scanner, Errors, CodeGen; 
procedure Factor; 
 
{--------------------------------------------------------------} 
implementation 
 
{--------------------------------------------------------------} 



{ Parse and Translate a Factor } 
 
procedure Factor; 
begin 
 LoadConstant(GetNumber); 
end; 
 
end. 
{--------------------------------------------------------------} 
 
 
As you can see, this unit calls a procedure, LoadConstant, which  
actually effects the output of the assembly-language code.  The  
unit also uses a new unit, CodeGen.  This step represents the last  
major change in our architecture, from earlier installments: The  
removal of the machine-dependent code to a separate unit. If I  
have my way, there will not be a single line of code, outside of  
CodeGen, that betrays the fact that we're targeting the 68000 CPU.   
And this is one place I think that having my way is quite  
feasible.   
 
For those of you who wish I were using the 80x86 architecture (or  
any other one) instead of the 68000, here's your answer:  Merely  
replace CodeGen with one suitable for your CPU of choice. 
 
So far, our code generator has only one procedure in it.  Here's  
the unit: 
 
 
{--------------------------------------------------------------} 
unit CodeGen; 
 
{--------------------------------------------------------------} 
interface 
uses Output; 
procedure LoadConstant(n: string); 
 
{--------------------------------------------------------------} 
implementation 
 
{--------------------------------------------------------------} 
{ Load the Primary Register with a Constant } 
 
procedure LoadConstant(n: string); 
begin 
 EmitLn('MOVE #' + n + ',D0' ); 
end; 
 
end. 
{--------------------------------------------------------------} 
 
 
Copy and compile this unit, and execute the following main  
program: 
 
{--------------------------------------------------------------} 
program Main; 



uses WinCRT, Input, Output, Errors, Scanner, Parser; 
begin 
 Factor; 
end. 
{--------------------------------------------------------------} 
 
 
There it is, the generated code, just as we hoped it would be. 
 
Now, I hope you can begin to see the advantage of the unit-based  
architecture of our new design.  Here we have a main program  
that's all of five lines long. That's all of the program we need  
to see, unless we choose to see more.  And yet, all those units  
are sitting there, patiently waiting to serve us.  We can have our  
cake and eat it too, in that we have simple and short code, but  
powerful allies.  What remains to be done is to flesh out the  
units to match the capabilities of earlier installments.  We'll do  
that in the next installment, but before I close, let's finish out  
the parsing of a factor, just to satisfy ourselves that we still  
know how.  The final version of CodeGen includes the new  
procedure, LoadVariable: 
 
{--------------------------------------------------------------} 
unit CodeGen; 
 
{--------------------------------------------------------------} 
interface 
uses Output; 
procedure LoadConstant(n: string); 
procedure LoadVariable(Name: string); 
 
{--------------------------------------------------------------} 
implementation 
 
{--------------------------------------------------------------} 
{ Load the Primary Register with a Constant } 
 
procedure LoadConstant(n: string); 
begin 
 EmitLn('MOVE #' + n + ',D0' ); 
end; 
 
{--------------------------------------------------------------} 
{ Load a Variable to the Primary Register } 
 
procedure LoadVariable(Name: string); 
begin 
 EmitLn('MOVE ' + Name + '(PC),D0'); 
end; 
 
 
end. 
{--------------------------------------------------------------} 
 
 
The parser unit itself doesn't change, but we have a more complex  
version of procedure Factor: 



 
{--------------------------------------------------------------} 
{ Parse and Translate a Factor } 
 
procedure Factor; 
begin 
 if IsDigit(Look) then 
  LoadConstant(GetNumber) 
 else if IsAlpha(Look)then 
  LoadVariable(GetName) 
 else 
  Error('Unrecognized character ' + Look); 
end; 
{--------------------------------------------------------------} 
 
  
Now, without altering the main program, you should find that our  
program will process either a variable or a constant factor.  At  
this point, our architecture is almost complete; we have units to  
do all the dirty work, and enough code in the parser and code  
generator to demonstrate that everything works.  What remains is  
to flesh out the units we've defined, particularly the parser and  
code generator, to support the more complex syntax elements that  
make up a real language.  Since we've done this many times before  
in earlier installments, it shouldn't take long to get us back to  
where we were before the long hiatus.  We'll continue this process  
in Installment 16, coming soon.  See you then. 
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INTRODUCTION  
  
This series of tutorials promises to be perhaps one of the longest- 
running mini-series in history, rivalled only by the delay in Volume IV  
of Knuth.  Begun in 1988, the series ran into a four-year hiatus in 1990  
when the "cares of this world," changes in priorities and interests, and  
the need to make a living seemed to stall it out after Installment 14.   
Those of you with loads of patience were finally rewarded, in the spring  



of last year, with the long-awaited Installment 15.  In it, I began to  
try to steer the series back on track, and in the process, to make it  
easier to continue on to the goal, which is to provide you with not only  
enough understanding of the difficult subject of compiler theory, but  
also enough tools, in the form of canned subroutines and concepts, so  
that you would be able to continue on your own and become proficient  
enough to build your own parsers and translators.  Because of that long  
hiatus, I thought it appropriate to go back and review the concepts we  
have covered so far, and to redo some of the software, as well.  In the  
past, we've never concerned ourselves much with the development of  
production-quality software tools ... after all, I was trying to teach  
(and learn) concepts, not production practice.  To do that, I tended to  
give you, not complete compilers or parsers, but only those snippets of  
code that illustrated the particular point we were considering at the  
moment.  
  
I still believe that's a good way to learn any subject; no one wants to  
have to make changes to 100,000 line programs just to try out a new  
idea.  But the idea of just dealing with code snippets, rather than  
complete programs, also has its drawbacks in that we often seemed to be  
writing the same code fragments over and over.  Although repetition has  
been thoroughly proven to be a good way to learn new ideas, it's also  
true that one can have too much of a good thing.  By the time I had  
completed Installment 14 I seemed to have reached the limits of my  
abilities to juggle multiple files and multiple versions of the same  
software functions.  Who knows, perhaps that's one reason I seemed to  
have run out of gas at that point.  
  
Fortunately, the later versions of Borland's Turbo Pascal allow us to  
have our cake and eat it too.  By using their concept of separately  
compilable units, we can still write small subroutines and functions,  
and keep our main programs and test programs small and simple.  But,  
once written, the code in the Pascal units will always be there for us  
to use, and linking them in is totally painless and transparent.  
  
Since, by now, most of you are programming in either C or C++, I know  
what you're thinking:  Borland, with their Turbo Pascal (TP), certainly  
didn't invent the concept of separately compilable modules.  And of  
course you're right.  But if you've not used TP lately, or ever, you may  
not realize just how painless the whole process is.  Even in C or C++,  
you still have to build a make file, either manually or by telling the  
compiler how to do so.  You must also list, using "extern" statements or  
header files, the functions you want to import.  In TP, you don't even  
have to do that.  You need only name the units you wish to use, and all  
of their procedures automatically become available.    
  
  
It's not my intention to get into a language-war debate here, so I won't  
pursue the subject any further.  Even I no longer use Pascal on my job  
... I use C at work and C++ for my articles in Embedded Systems  
Programming and other magazines.  Believe me, when I set out to  
resurrect this series, I thought long and hard about switching both  
languages and target systems to the ones that we're all using these  
days, C/C++ and PC architecture, and possibly object-oriented methods as  
well.  In the end, I felt it would cause more confusion than the hiatus  
itself has. And after all, Pascal still remains one of the best possible  
languages for teaching, not to mention production programming.  Finally,  



TP still compiles at the speed of light, much faster than competing  
C/C++ compilers. And Borland's smart linker, used in TP but not in their  
C++ products, is second to none.  Aside from being much faster than  
Microsoft-compatible linkers, the Borland smart linker will cull unused  
procedures and data items, even to the extent of trimming them out of  
defined objects if they're not needed.  For one of the few times in our  
lives, we don't have to compromise between completeness and efficiency.   
When we're writing a TP unit, we can make it as complete as we like,  
including any member functions and data items we may think we will ever  
need, confident that doing so will not create unwanted bloat in the  
compiled and linked executable.  
  
The point, really, is simply this:  By using TP's unit mechanism, we can  
have all the advantages and convenience of writing small, seemingly  
stand-alone test programs, without having to constantly rewrite the  
support functions that we need.  Once written, the TP units sit there,  
quietly waiting to do their duty and give us the support we need, when  
we need it.  
  
Using this principle, in Installment 15 I set out to minimize our  
tendency to re-invent the wheel by organizing  our code into separate  
Turbo Pascal units, each containing different parts of the compiler.  We  
ended up with the following units:  
  
* Input  
* Output  
* Errors  
* Scanner  
* Parser  
* CodeGen  
  
Each of these units serves a different function, and encapsulates  
specific areas of functionality.  The Input and Output units, as their  
name implies, provide character stream I/O and the all-important  
lookahead character upon which our predictive parser is based.  The  
Errors unit, of course, provides standard error handling.  The Scanner  
unit contains all of our boolean functions such as IsAlpha, and the  
routines GetName and GetNumber, which process multi-character tokens.  
  
The two units we'll be working with the most, and the ones that most  
represent the personality of our compiler, are Parser and CodeGen.   
Theoretically, the Parser unit should encapsulate all aspects of the  
compiler that depend on the syntax of the compiled language (though, as  
we saw last time, a small amount of this syntax spills over into  
Scanner).  Similarly, the code generator unit, CodeGen, contains all of  
the code dependent upon the target machine.  In this installment, we'll  
be continuing with the development of the functions in these two all- 
important units.  
  
  
 
 
JUST LIKE CLASSICAL?  
  
Before we proceed, however, I think I should clarify the relationship   
between, and the functionality of these units.  Those of you who are  
familiar with compiler theory as taught in universities will, of course,  



recognize the names, Scanner, Parser, and CodeGen, all of which are  
components of a classical compiler implementation.  You may be thinking  
that I've abandoned my commitment to the KISS philosophy, and drifted  
towards a more conventional architecture than we once had.  A closer  
look, however, should convince you that, while the names are similar,  
the functionalities are quite different.  
  
Together, the scanner and parser of a classical implementation comprise  
the so-called "front end," and the code generator, the back end.  The  
front end routines process the language-dependent, syntax-related  
aspects of the source language, while the code generator, or back end,  
deals with the target machine-dependent parts of the problem.  In  
classical compilers, the two ends communicate via a file of instructions  
written in an intermediate language (IL).  
  
Typically, a classical scanner is a single procedure, operating as a co- 
procedure with the parser.  It "tokenizes" the source file, reading it  
character by character, recognizing language elements, translating them  
into tokens, and passing them along to the parser.  You can think of the  
parser as an abstract machine, executing "op codes," which are the  
tokens.  Similarly, the parser generates op codes of a second abstract  
machine, which mechanizes the IL.  Typically, the IL file is written to  
disk by the parser, and read back again by the code generator.  
  
Our organization is quite different.  We have no lexical scanner, in the  
classical sense;  our unit Scanner, though it has a similar name, is not  
a single procedure or co-procedure, but merely a set of separate  
subroutines which are called by the parser as needed.   
  
Similarly, the classical code generator, the back end,  is a translator  
in its own right, reading an IL "source" file, and emitting an object  
file.  Our code generator doesn't work that way.  In our compiler, there  
IS no intermediate language; every construct in the source language  
syntax is converted into assembly language as it is recognized by the  
parser.  Like Scanner, the unit CodeGen consists of individual  
procedures which are called by the parser as needed.  
  
This "code 'em as you find 'em" philosophy may not produce the world's  
most efficient code -- for example, we haven't provided (yet!) a  
convenient place for an optimizer to work its magic -- but it sure does  
simplify the compiler, doesn't it?  
  
And that observation prompts me to reflect, once again, on how we have  
managed to reduce a compiler's functions to such comparatively simple  
terms.  I've waxed eloquent on this subject in past installments, so I  
won't belabor the point too much here.  However, because of the time  
that's elapsed since those last soliloquies, I hope you'll grant me just  
a little time to remind myself, as well as you, how we got here.  We got  
here by applying several principles that writers of commercial compilers  
seldom have the luxury of using.  These are:  
  
o The KISS philosophy -- Never do things the hard way without a  
reason  
  
o Lazy coding -- Never put off until tomorrow what you can put  
of forever (with credits to P.J. Plauger)  
  



o Skepticism -- Stubborn refusal to do something just because  
that's the way it's always been done.  
  
o Acceptance of inefficient code  
  
o Rejection of arbitrary constraints  
  
As I've reviewed the history of compiler construction, I've learned that  
virtually every production compiler in history has suffered from pre- 
imposed conditions that strongly influenced its design. The original  
FORTRAN compiler of John Backus, et al, had to compete with assembly  
language, and therefore was constrained to produce extremely efficient  
code.  The IBM compilers for the minicomputers of the 70's had to run in  
the very small RAM memories then available -- as small as 4k.  The early  
Ada compiler had to compile itself.  Per Brinch Hansen decreed that his  
Pascal compiler developed for the IBM PC must execute in a 64k machine.   
Compilers developed in Computer Science courses had to compile the  
widest variety of languages, and therefore required LALR parsers.  
  
In each of these cases, these preconceived constraints literally  
dominated the design of the compiler.   
  
A good example is Brinch Hansen's compiler, described in his excellent  
book, "Brinch Hansen on Pascal Compilers" (highly recommended).  Though  
his compiler is one of the most clear and un-obscure compiler  
implementations I've seen, that one decision, to compile large files in  
a small RAM, totally drives the design, and he ends up with not just  
one, but many intermediate files, together with the drivers to write and  
read them.  
  
In time, the architectures resulting from such decisions have found  
their way into computer science lore as articles of faith. In this one  
man's opinion, it's time that they were re-examined critically.  The  
conditions, environments, and requirements that led to classical  
architectures are not the same as the ones we have today.  There's no  
reason to believe the solutions should be the same, either.  
  
In this tutorial, we've followed the leads of such pioneers in the world  
of small compilers for Pcs as Leor Zolman, Ron Cain, and James Hendrix,  
who didn't know enough compiler theory to know that they "couldn't do it  
that way."  We have resolutely refused to accept arbitrary constraints,  
but rather have done whatever was easy.  As a result, we have evolved an  
architecture that, while quite different from the classical one, gets  
the job done in very simple and straightforward fashion.  
  
I'll end this philosophizing with an observation re the notion of an  
intermediate language.  While I've noted before that we don't have one  
in our compiler, that's not exactly true; we _DO_ have one, or at least  
are evolving one, in the sense that we are defining code generation  
functions for the parser to call.  In essence, every call to a code  
generation procedure can be thought of as an instruction in an  
intermediate language.  Should we ever find it necessary to formalize an  
intermediate language, this is the way we would do it:  emit codes from  
the parser, each representing a call to one of the code generator  
procedures, and then process each code by calling those procedures in a  
separate pass, implemented in a back end. Frankly, I don't see that  
we'll ever find a need for this approach, but there is the connection,  



if you choose to follow it, between the classical and the current  
approaches.  
  
 
 
FLESHING OUT THE PARSER  
  
Though I promised you, somewhere along about Installment 14, that we'd  
never again write every single function from scratch, I ended up  
starting to do just that in Installment 15.  One reason: that long  
hiatus between the two installments made a review seem eminently  
justified ... even imperative, both for you and for me. More  
importantly, the decision to collect the procedures into modules  
(units), forced us to look at each one yet again, whether we wanted to  
or not.  And, finally and frankly, I've had some new ideas in the last  
four years that warranted a fresh look at some old friends.  When I  
first began this series, I was frankly amazed, and pleased, to learn  
just how simple parsing routines can be made.  But this last time  
around, I've surprised myself yet again, and been able to make them just  
that last little bit simpler, yet.  
  
Still, because of this total rewrite of the parsing modules, I was only  
able to include so much in the last installment.  Because of this, our  
hero, the parser, when last seen, was a shadow of his former self,   
consisting of only enough code to parse and process a factor consisting  
of either a variable or a constant.  The main effort of this current  
installment will be to help flesh out the parser to its former glory.   
In the process, I hope you'll bear with me if we sometimes cover ground  
we've long since been over and dealt with.  
  
First, let's take care of a problem that we've addressed before: Our  
current version of procedure Factor, as we left it in Installment 15,   
can't handle negative arguments.  To fix that, we'll introduce the  
procedure SignedFactor:  
  
  
{--------------------------------------------------------------}  
{ Parse and Translate a Factor with Optional Sign }  
  
procedure SignedFactor;  
var Sign: char;  
begin  
 Sign := Look;  
 if IsAddop(Look) then  
  GetChar;  
 Factor;  
 if Sign = '-' then Negate;  
end;  
{--------------------------------------------------------------}   
  
  
Note that this procedure calls a new code generation routine, Negate:  
  
  
{--------------------------------------------------------------}  
{ Negate Primary }  
  



procedure Negate;  
begin  
 EmitLn('NEG D0');  
end;  
{--------------------------------------------------------------}  
  
  
(Here, and elsewhere in this series, I'm only going to show you the new  
routines. I'm counting on you to put them into the proper unit, which  
you should normally have no trouble identifying.  Don't forget to add  
the procedure's prototype to the interface section of the unit.)  
  
In the main program, simply change the procedure called from Factor to  
SignedFactor, and give the code a test.  Isn't it neat how the Turbo  
linker and make facility handle all the details?  
  
Yes, I know, the code isn't very efficient.  If we input a number, -3,  
the generated code is:  
  
 MOVE #3,D0  
 NEG D0  
  
which is really, really dumb.  We can do better, of course, by simply  
pre-appending a minus sign to the string passed to LoadConstant, but it  
adds a few lines of code to SignedFactor, and I'm applying the KISS  
philosophy very aggressively here. What's more,  to tell the truth, I  
think I'm subconsciously enjoying generating "really, really dumb" code,  
so I can have the pleasure of watching it get dramatically better when  
we get into optimization methods.  
  
Most of you have never heard of John Spray, so allow me to introduce him  
to you here.  John's from New Zealand, and used to teach computer  
science at one of its universities.  John wrote a compiler for the  
Motorola 6809, based on a delightful, Pascal-like language of his own  
design called "Whimsical."  He later ported the compiler to the 68000,  
and for awhile it was the only compiler I had for my homebrewed 68000  
system.    
  
For the record, one of my standard tests for any new compiler is to see  
how the compiler deals with a null program like:  
  
 program main;  
 begin  
 end.  
  
My test is to measure the time required to compile and link, and the  
size of the object file generated.  The undisputed _LOSER_ in the test  
is the DEC C compiler for the VAX, which took 60 seconds to compile, on  
a VAX 11/780, and generated a 50k object file.  John's compiler is the  
undisputed, once, future, and forever king in the code size department.   
Given the null program, Whimsical generates precisely two bytes of code,  
implementing the one instruction,  
  
 RET  
  
By setting a compiler option to generate an include file rather than a  
standalone program, John can even cut this size, from two bytes to zero!   



Sort of hard to beat a null object file, wouldn't you say?  
  
Needless to say, I consider John to be something of an expert on code  
optimization, and I like what he has to say: "The best way to optimize  
is not to have to optimize at all, but to produce good code in the first  
place." Words to live by.  When we get started on optimization, we'll  
follow John's advice, and our first step will not be to add a peephole  
optimizer or other after-the-fact device, but to improve the quality of  
the code emitted before optimization.  So make a note of SignedFactor as  
a good first candidate for attention, and for now we'll leave it be.  
  
TERMS AND EXPRESSIONS  
  
I'm sure you know what's coming next: We must, yet again, create the  
rest of the procedures that implement the recursive-descent parsing of  
an expression.  We all know that the hierarchy of procedures for  
arithmetic expressions is:  
  
expression  
 term  
  factor  
  
However, for now let's continue to do things one step at a time,  
and consider only expressions with additive terms in them.  The  
code to implement expressions, including a possibly signed first  
term, is shown next:  
  
  
{--------------------------------------------------------------}  
{ Parse and Translate an Expression }  
  
procedure Expression;  
begin  
 SignedFactor;  
 while IsAddop(Look) do  
  case Look of  
   '+': Add;  
   '-': Subtract;  
  end;  
end;  
{--------------------------------------------------------------}  
  
  
This procedure calls two other procedures to process the  
operations:  
  
  
{--------------------------------------------------------------}  
{ Parse and Translate an Addition Operation }  
  
procedure Add;  
begin  
 Match('+');  
 Push;  
 Factor;  
 PopAdd;  
end;  



  
  
{--------------------------------------------------------------}  
{ Parse and Translate a Subtraction Operation }  
  
procedure Subtract;  
begin  
 Match('-');  
 Push;  
 Factor;  
 PopSub;  
end;  
{--------------------------------------------------------------}  
  
  
The three procedures Push, PopAdd, and PopSub are new code generation  
routines.  As the name implies, procedure Push generates code to push  
the primary register (D0, in our 68000 implementation) to the stack.   
PopAdd and PopSub pop the top of the stack again, and add it to, or  
subtract it from, the primary register.  The code is shown next:  
  
  
 
 
{--------------------------------------------------------------}  
{ Push Primary to Stack }  
  
procedure Push;  
begin  
 EmitLn('MOVE D0,-(SP)');  
end;  
  
{--------------------------------------------------------------}  
{ Add TOS to Primary }  
  
procedure PopAdd;  
begin  
 EmitLn('ADD (SP)+,D0');  
end;  
  
{--------------------------------------------------------------}  
{ Subtract TOS from Primary }  
  
procedure PopSub;  
begin  
 EmitLn('SUB (SP)+,D0');  
 Negate;  
end;  
{--------------------------------------------------------------}  
  
  
Add these routines to Parser and CodeGen, and change the main program to  
call Expression. Voila!  
  
The next step, of course, is to add the capability for dealing with  
multiplicative terms.  To that end, we'll add a procedure Term, and code  
generation procedures PopMul and PopDiv.  These code generation  



procedures are shown next:  
  
  
{--------------------------------------------------------------}  
{ Multiply TOS by Primary }  
  
procedure PopMul;  
begin  
 EmitLn('MULS (SP)+,D0');  
end;  
  
{--------------------------------------------------------------}  
{ Divide Primary by TOS }  
  
procedure PopDiv;  
begin  
 EmitLn('MOVE (SP)+,D7');  
 EmitLn('EXT.L D7');  
 EmitLn('DIVS D0,D7');  
 EmitLn('MOVE D7,D0');  
end;  
{--------------------------------------------------------------}  
  
  
I admit, the division routine is a little busy, but there's no help for  
it.  Unfortunately, while the 68000 CPU allows a division using the top  
of stack (TOS), it wants the arguments in the wrong order, just as it  
does for subtraction.  So our only recourse is to pop the stack to a  
scratch register (D7), perform the division there, and then move the  
result back to our primary register, D0. Note the use of signed multiply  
and divide operations.  This follows an implied, but unstated,  
assumption, that all our variables will be signed 16-bit integers. This  
decision will come back to haunt us later, when we start looking at  
multiple data types, type conversions, etc.  
  
Our procedure Term is virtually a clone of Expression, and looks like  
this:  
  
  
{--------------------------------------------------------------}  
{ Parse and Translate a Term }  
  
procedure Term;  
begin  
 Factor;  
 while IsMulop(Look) do  
  case Look of  
   '*': Multiply;  
   '/': Divide;  
  end;  
end;  
{--------------------------------------------------------------}  
  
  
Our next step is to change some names.  SignedFactor now becomes  
SignedTerm, and the calls to Factor in Expression, Add, Subtract and  
SignedTerm get changed to call Term:  



  
  
{--------------------------------------------------------------}  
{ Parse and Translate a Term with Optional Leading Sign }  
  
procedure SignedTerm;  
var Sign: char;  
begin  
 Sign := Look;  
 if IsAddop(Look) then  
  GetChar;  
 Term;  
 if Sign = '-' then Negate;  
end;  
{--------------------------------------------------------------}  
...  
{--------------------------------------------------------------}  
{ Parse and Translate an Expression }  
  
procedure Expression;  
begin  
 SignedTerm;  
 while IsAddop(Look) do  
  case Look of  
   '+': Add;  
   '-': Subtract;  
  end;  
end;  
{--------------------------------------------------------------}  
  
  
If memory serves me correctly, we once had BOTH a procedure SignedFactor  
and a procedure SignedTerm. I had reasons for doing that at the time ...  
they had to do with the handling of Boolean algebra and, in particular,  
the Boolean "not" function.  But certainly, for arithmetic operations,  
that duplication isn't necessary.  In an expression like:  
  
 -x*y  
  
it's very apparent that the sign goes with the whole TERM, x*y, and not  
just the factor x, and that's the way Expression is coded.    
  
Test this new code by executing Main.  It still calls Expression, so you  
should now be able to deal with expressions containing any of the four  
arithmetic operators.  
  
Our last bit of business, as far as expressions goes, is to modify  
procedure Factor to allow for parenthetical expressions.  By using a  
recursive call to Expression, we can reduce the needed code to virtually  
nothing.  Five lines added to Factor do the job:  
  
  
{--------------------------------------------------------------}  
{ Parse and Translate a Factor }  
  
procedure Factor;  
begin  



 if Look ='(' then begin  
  Match('(');  
  Expression;  
  Match(')');  
  end  
 else if IsDigit(Look) then  
  LoadConstant(GetNumber)  
 else if IsAlpha(Look)then  
  LoadVariable(GetName)  
 else  
  Error('Unrecognized character ' + Look);  
end;  
{--------------------------------------------------------------}  
  
  
At this point, your "compiler" should be able to handle any legal  
expression you can throw at it.  Better yet, it should reject all  
illegal ones!  
  
ASSIGNMENTS  
  
As long as we're this close, we might as well create the code to deal  
with an assignment statement.  This code needs only to remember the name  
of the target variable where we are to store the result of an  
expression, call Expression, then store the number.  The procedure is  
shown next:  
  
  
{--------------------------------------------------------------}  
{ Parse and Translate an Assignment Statement }  
  
procedure Assignment;  
var Name: string;  
begin  
 Name := GetName;  
 Match('=');  
 Expression;  
 StoreVariable(Name);  
end;  
{--------------------------------------------------------------}  
  
The assignment calls for yet another code generation routine:  
  
 
 
{--------------------------------------------------------------}  
{ Store the Primary Register to a Variable }  
  
procedure StoreVariable(Name: string);  
begin  
 EmitLn('LEA ' + Name + '(PC),A0');  
 EmitLn('MOVE D0,(A0)');  
end;  
{--------------------------------------------------------------}  
  
  
Now, change the call in Main to call Assignment, and you should see a  



full assignment statement being processed correctly.  Pretty neat, eh?   
And painless, too.  
  
In the past, we've always tried to show BNF relations to define the  
syntax we're developing. I haven't done that here, and it's high time I  
did.  Here's the BNF:  
  
  
<factor>      ::= <variable> | <constant> | '(' <expression> ')'   
<signed_term> ::= [<addop>] <term>  
<term>        ::= <factor> (<mulop> <factor>)*   
<expression>  ::= <signed_term> (<addop> <term>)*  
<assignment>  ::= <variable> '=' <expression>  
  
BOOLEANS  
  
The next step, as we've learned several times before, is to add Boolean  
algebra.  In the past, this step has at least doubled the amount of code  
we've had to write.  As I've gone over this step in my mind, I've found  
myself diverging more and more from what we did in previous  
installments.  To refresh your memory, I noted that Pascal treats the  
Boolean operators pretty much identically to the way it treats  
arithmetic ones.  A Boolean "and" has the same precedence level as  
multiplication, and the "or" as addition.  C, on the other hand, sets  
them at different precedence levels, and all told has a whopping 17  
levels.  In our earlier work, I chose something in between, with seven  
levels.  As a result, we ended up with things called Boolean  
expressions, paralleling in most details the arithmetic expressions, but  
at a different precedence level.  All of this, as it turned out, came  
about because I didn't like having to put parentheses around the Boolean  
expressions in statements like:  
  
      IF (c >= 'A') and (c <= 'Z') then ...  
  
In retrospect, that seems a pretty petty reason to add many layers of  
complexity to the parser.  Perhaps more to the point, I'm not sure I was  
even able to avoid the parens.    
  
For kicks, let's start anew, taking a more Pascal-ish approach, and just  
treat the Boolean operators at the same precedence level as the  
arithmetic ones. We'll see where it leads us.  If it seems to be down  
the garden path, we can always backtrack to the earlier approach.  
  
For starters, we'll add the "addition-level" operators to Expression.  
That's easily done; first, modify the function IsAddop in unit Scanner  
to include two extra operators: '|' for "or," and '~' for "exclusive  
or":  
  
  
 
 
{--------------------------------------------------------------}  
function IsAddop(c: char): boolean;  
begin  
 IsAddop := c in ['+','-', '|', '~'];  
end;  
{--------------------------------------------------------------}  



  
  
Next, we must include the parsing of the operators in procedure  
Expression:  
  
  
{--------------------------------------------------------------}  
procedure Expression;  
begin  
 SignedTerm;  
 while IsAddop(Look) do  
  case Look of  
   '+': Add;  
   '-': Subtract;  
   '|': _Or;  
   '~': _Xor;  
  end;  
{--------------------------------------------------------------}  
end;  
  
  
(The underscores are needed, of course, because "or" and "xor" are  
reserved words in Turbo Pascal.)  
  
Next, the procedures _Or and _Xor:  
  
  
{--------------------------------------------------------------}  
{ Parse and Translate a Subtraction Operation }  
  
procedure _Or;  
begin  
 Match('|');  
 Push;  
 Term;  
 PopOr;  
end;  
  
{--------------------------------------------------------------}  
{ Parse and Translate a Subtraction Operation }  
  
procedure _Xor;  
begin  
 Match('~');  
 Push;  
 Term;  
 PopXor;  
end;  
{--------------------------------------------------------------}  
  
And, finally, the new code generator procedures:  
  
  
 
 
{--------------------------------------------------------------}  
{ Or TOS with Primary }  



  
procedure PopOr;  
begin  
 EmitLn('OR (SP)+,D0');  
end;  
  
{--------------------------------------------------------------}  
{ Exclusive-Or TOS with Primary }  
  
procedure PopXor;  
begin  
 EmitLn('EOR (SP)+,D0');  
end;  
{--------------------------------------------------------------}  
  
Now, let's test the translator (you might want to change the call  
in Main back to a call to Expression, just to avoid having to type  
"x=" for an assignment every time).  
  
So far, so good.  The parser nicely handles expressions of the  
form:  
  
 x|y~z  
  
Unfortunately, it also does nothing to protect us from mixing  
Boolean and arithmetic algebra.  It will merrily generate code  
for:  
  
 (a+b)*(c~d)  
  
We've talked about this a bit, in the past.  In general the rules  
for what operations are legal or not cannot be enforced by the  
parser itself, because they are not part of the syntax of the  
language, but rather its semantics.  A compiler that doesn't allow  
mixed-mode expressions of this sort must recognize that c and d  
are Boolean variables, rather than numeric ones, and balk at  
multiplying them in the next step. But this "policing" can't be  
done by the parser; it must be handled somewhere between the  
parser and the code generator. We aren't in a position to enforce  
such rules yet, because we haven't got either a way of declaring  
types, or a symbol table to store the types in.  So, for what  
we've got to work with at the moment, the parser is doing  
precisely what it's supposed to do.  
  
Anyway, are we sure that we DON'T want to allow mixed-type  
operations?  We made the decision some time ago (or, at least, I  
did) to adopt the value 0000 as a Boolean "false," and -1, or  
FFFFh, as a Boolean "true."  The nice part about this choice is  
that bitwise operations work exactly the same way as logical ones.   
In other words, when we do an operation on one bit of a logical  
variable, we do it on all of them.  This means that we don't need  
to distinguish between logical and bitwise operations, as is done  
in C with the operators & and &&, and | and ||.  Reducing the  
number of operators by half certainly doesn't seem all bad.  
  
From the point of view of the data in storage, of course, the  
computer and compiler couldn't care less whether the number FFFFh  



represents the logical TRUE, or the numeric -1.  Should we?  I  
sort of think not.  I can think of many examples (though they  
might be frowned upon as "tricky" code) where the ability to mix  
the types might come in handy.  Example, the Dirac delta function,  
which could be coded in one simple line:  
  
 -(x=0)  
  
or the absolute value function (DEFINITELY tricky code!):  
  
 x*(1+2*(x<0))  
  
Please note, I'm not advocating coding like this as a way of life.   
I'd almost certainly write these functions in more readable form,   
using IFs, just to keep from confusing later maintainers.  Still,  
a moral question arises:  Do we have the right to ENFORCE our  
ideas of good coding practice on the programmer, but writing the  
language so he can't do anything else?  That's what Nicklaus Wirth  
did, in many places in Pascal, and Pascal has been criticized for  
it -- for not being as "forgiving" as C.    
  
An interesting parallel presents itself in the example of the  
Motorola 68000 design.  Though Motorola brags loudly about the  
orthogonality of their instruction set, the fact is that it's far  
from orthogonal.  For example, you can read a variable from its  
address: 
  
 MOVE X,D0 (where X is the name of a variable)  
  
but you can't write in the same way.  To write, you must load an  
address register with the address of X.  The same is true for PC- 
relative addressing: 
  
 MOVE X(PC),DO (legal)  
 MOVE D0,X(PC) (illegal)  
  
When you begin asking how such non-orthogonal behavior came about,  
you find that someone in Motorola had some theories about how  
software should be written.  Specifically, in this case, they  
decided that self-modifying code, which you can implement using  
PC-relative writes, is a Bad Thing.  Therefore, they designed the  
processor to prohibit it.  Unfortunately, in the process they also  
prohibited _ALL_ writes of the forms shown above, however benign.   
Note that this was not something done by default.  Extra design  
work had to be done, and extra gates added, to destroy the natural  
orthogonality of the instruction set.  
  
One of the lessons I've learned from life: If you have two  
choices, and can't decide which one to take, sometimes the best  
thing to do is nothing.  Why add extra gates to a processor to  
enforce some stranger's idea of good programming practice?  Leave  
the instructions in, and let the programmers debate what good  
programming practice is.  Similarly, why should we add extra code  
to our parser, to test for and prevent conditions that the user  
might prefer to do, anyway?  I'd rather leave the compiler simple,  
and let the software experts debate whether the practices should  
be used or not.  



  
All of which serves as rationalization for my decision as to how  
to prevent mixed-type arithmetic:  I won't.  For a language  
intended for systems programming, the fewer rules, the better. If  
you don't agree, and want to test for such conditions, we can do  
it once we have a symbol table.  
  
BOOLEAN "AND"  
  
With that bit of philosophy out of the way, we can press on to the  
"and" operator, which goes into procedure Term. By now, you can  
probably do this without me, but here's the code, anyway:  
  
In Scanner,  
  
{--------------------------------------------------------------}  
function IsMulop(c: char): boolean;  
begin  
 IsMulop := c in ['*','/', '&'];  
end;  
{--------------------------------------------------------------}  
  
In Parser,  
  
  
{--------------------------------------------------------------}  
procedure Term;  
begin  
 Factor;  
 while IsMulop(Look) do  
  case Look of  
   '*': Multiply;  
   '/': Divide;  
   '&': _And;  
  end;  
end;  
  
{--------------------------------------------------------------}  
{ Parse and Translate a Boolean And Operation }  
  
procedure _And;  
begin  
 Match('&');  
 Push;  
 Factor;  
 PopAnd;  
end;  
{--------------------------------------------------------------}  
  
and in CodeGen,  
  
  
{--------------------------------------------------------------}  
{ And Primary with TOS }  
  
procedure PopAnd;  
begin  



 EmitLn('AND (SP)+,D0');  
end;  
{--------------------------------------------------------------}  
  
Your parser should now be able to process almost any sort of logical  
expression, and (should you be so inclined), mixed-mode expressions as  
well.  
  
Why not "all sorts of logical expressions"?  Because, so far, we haven't  
dealt with the logical "not" operator, and this is where it gets tricky.   
The logical "not" operator seems, at first glance, to be identical in  
its behavior to the unary minus, so my first thought was to let the  
exclusive or operator, '~', double as the unary "not."  That didn't  
work. In my first attempt, procedure SignedTerm simply ate my '~',  
because the character passed the test for an addop, but SignedTerm  
ignores all addops except '-'.  It would have been easy enough to add  
another line to SignedTerm, but that would still not solve the problem,  
because note that Expression only accepts a signed term for the _FIRST_  
argument.    
  
Mathematically, an expression like:  
  
 -a * -b  
  
makes little or no sense, and the parser should flag it as an error.   
But the same expression, using a logical "not," makes perfect sense:  
  
 not a and not b  
  
In the case of these unary operators, choosing to make them act the same  
way seems an artificial force fit, sacrificing reasonable behavior on  
the altar of implementational ease.  While I'm all for keeping the  
implementation as simple as possible, I don't think we should do so at  
the expense of reasonableness.  Patching like this would be missing the  
main point, which is that the logical "not" is simply NOT the same kind  
of animal as the unary minus.  Consider the exclusive or, which is most  
naturally written as:    
  
 a~b ::= (a and not b) or (not a and b)  
  
If we allow the "not" to modify the whole term, the last term in  
parentheses would be interpreted as:  
  
 not(a and b)  
  
which is not the same thing at all.  So it's clear that the logical  
"not" must be thought of as connected to the FACTOR, not the term.  
  
The idea of overloading the '~' operator also makes no sense from a  
mathematical point of view.  The implication of the unary minus is that  
it's equivalent to a subtraction from zero:  
  
 -x <=> 0-x  
  
In fact, in one of my more simple-minded versions of Expression, I  
reacted to a leading addop by simply preloading a zero, then processing  
the operator as though it were a binary operator.  But a "not" is not  



equivalent to an exclusive or with zero ... that would just give back  
the original number.  Instead, it's an exclusive or with FFFFh, or -1.  
  
In short, the seeming parallel between the unary "not" and the unary  
minus falls apart under closer scrutiny. "not" modifies the factor, not  
the term, and it is not related to either the unary minus nor the  
exclusive or.  Therefore, it deserves a symbol to call its own. What  
better symbol than the obvious one, also used by C, the '!' character?   
Using the rules about the way we think the "not" should behave, we  
should be able to code the exclusive or (assuming we'd ever need to), in  
the very natural form:  
  
 a & !b | !a & b  
  
Note that no parentheses are required -- the precedence levels we've  
chosen automatically take care of things.  
  
If you're keeping score on the precedence levels, this definition puts  
the '!' at the top of the heap.  The levels become:  
  
1. !  
2. - (unary)  
3. *, /, &  
4. +, -, |, ~  
  
Looking at this list, it's certainly not hard to see why we had trouble  
using '~' as the "not" symbol!  
  
So how do we mechanize the rules?  In the same way as we did with  
SignedTerm, but at the factor level.  We'll define a procedure  
NotFactor:  
  
  
{--------------------------------------------------------------}  
{ Parse and Translate a Factor with Optional "Not" }  
  
procedure NotFactor;  
begin  
 if Look ='!' then begin  
  Match('!');  
  Factor;  
  Notit;  
  end  
 else  
  Factor;  
end;  
{--------------------------------------------------------------}  
  
  
and call it from all the places where we formerly called Factor, i.e.,  
from Term, Multiply, Divide, and _And.  Note the new code generation  
procedure:  
  
  
{--------------------------------------------------------------}  
{ Bitwise Not Primary }  
  



procedure NotIt;  
begin  
 EmitLn('EOR #-1,D0');  
end;  
  
{--------------------------------------------------------------}  
  
  
Try this now, with a few simple cases. In fact, try that exclusive or  
example,  
  
 a&!b|!a&b  
  
  
You should get the code (without the comments, of course):  
  
 MOVE A(PC),DO    ; load a  
 MOVE D0,-(SP)  ; push it  
 MOVE B(PC),DO  ; load b  
 EOR #-1,D0  ; not it  
 AND (SP)+,D0  ; and with a  
 MOVE D0,-(SP)  ; push result  
 MOVE A(PC),DO  ; load a  
 EOR #-1,D0  ; not it  
 MOVE D0,-(SP)  ; push it  
 MOVE B(PC),DO  ; load b  
 AND (SP)+,D0  ; and with !a  
 OR (SP)+,D0  ; or with first term  
  
That's precisely what we'd like to get.  So, at least for both  
arithmetic and logical operators, our new precedence and new, slimmer  
syntax hang together.  Even the peculiar, but legal, expression with  
leading addop:  
  
 ~x  
  
makes sense.  SignedTerm ignores the leading '~', as it should, since  
the expression is equivalent to:  
  
 0~x,  
  
which is equal to x.  
  
When we look at the BNF we've created, we find that our boolean algebra  
now adds only one extra line:  
  
  
<not_factor>  ::= [!] <factor>  
<factor>       ::= <variable> | <constant> | '(' <expression> ')'   
<signed_term>  ::= [<addop>] <term>  
<term>         ::= <not_factor> (<mulop> <not_factor>)*   
<expression>   ::= <signed_term> (<addop> <term>)*  
<assignment>   ::= <variable> '=' <expression>  
  
  
That's a big improvement over earlier efforts.  Will our luck continue  
to hold when we get to relational operators?  We'll find out soon, but  



it will have to wait for the next installment. We're at a good stopping  
place, and I'm anxious to get this installment into your hands.  It's  
already been a year since the release of Installment 15.  I blush to  
admit that all of this current installment has been ready for almost as  
long, with the exception of relational operators.  But the information  
does you no good at all, sitting on my hard disk, and by holding it back  
until the relational operations were done, I've kept it out of your  
hands for that long.  It's time for me to let go of it and get it out  
where you can get value from it. Besides, there are quite a number of  
serious philosophical questions associated with the relational  
operators, as well, and I'd rather save them for a separate installment  
where I can do them justice.  
  
Have fun with the new, leaner arithmetic and logical parsing, and I'll  
see you soon with relationals.  
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