Related articles |
---|
alg for "compacting" series-parallel graphs (yacc->BNF)? vladimir@cs.ualberta.ca (Vladimir Alexiev) (1998-03-03) |
Re: alg for "compacting" series-parallel graphs (yacc->BNF)? carl@bitstream.net (Carl Sturtivant) (1998-03-06) |
Re: alg for "compacting" series-parallel graphs (yacc->BNF)? joachim.durchholz@munich.netsurf.de (Joachim Durchholz) (1998-03-07) |
Topological sorting vladimir@cs.ualberta.ca (Vladimir Alexiev) (1998-03-07) |
From: | Vladimir Alexiev <vladimir@cs.ualberta.ca> |
Newsgroups: | comp.theory,sci.math,comp.compilers |
Date: | 3 Mar 1998 10:52:15 -0500 |
Organization: | University of Alberta, Computing Science |
Distribution: | inet |
Keywords: | theory, question |
Does anyone know of an algorithm to find a "compact representation" of
a series-parallel graph? Eg
-- a -- b -- c -- should -- b --
/ \ become / \
----- a ------- c ----- -- a ----------- c --
The set of all paths from source to target should remain the same,
while the number of nodes should be minimized.
I want to use this for a convertor from yacc to BNF. Yacc only allows
top-level alternatives while BNF also allows grouping
x : a b c x : a (b | ) c
| a c
Also, how can I use the looping constructs of EBNF? I think I know how
to do it for the most-often used cases
xs : x and xs :
| xs ',' x | xs ',' x
but what would be a general algorithm?
All this is for a yacc-grammar prettyprinter, which will take a
y.output file and produce a railroad diagram using rail.sty or
syntax.sty (available on CPAN).
Please CC me if you reply; I will summarize the replies.
TIA, Vlad
--
Return to the
comp.compilers page.
Search the
comp.compilers archives again.