Related articles |
---|
LL(2) always factorable to LL(1)? aduncan@cs.ucsb.edu (Andrew M. Duncan) (1998-01-17) |
Re: LL(2) always factorable to LL(1)? clark@quarry.zk3.dec.com (Chris Clark USG) (1998-01-20) |
Re: LL(2) always factorable to LL(1)? bill@amber.ssd.csd.harris.com (1998-01-21) |
Re: LL(2) always factorable to LL(1)? mickunas@cs.uiuc.edu (1998-01-23) |
Re: LL(2) always factorable to LL(1)? cfc@world.std.com (Chris F Clark) (1998-01-23) |
Re: LL(2) always factorable to LL(1)? parrt@magelang.com (Terence Parr) (1998-01-23) |
Re: LL(2) always factorable to LL(1)? thetick@magelang.com (Scott Stanchfield) (1998-01-24) |
Re: LL(2) always factorable to LL(1)? parrt@magelang.com (Terence Parr) (1998-02-01) |
From: | bill@amber.ssd.csd.harris.com (Bill Leonard) |
Newsgroups: | comp.compilers |
Date: | 21 Jan 1998 23:51:31 -0500 |
Organization: | Concurrent Computer Corporation, Ft. Lauderdale FL |
References: | 98-01-071 98-01-080 |
Keywords: | parse, LL(1) |
Chris Clark USG <clark@quarry.zk3.dec.com> writes:
> The theoretical answer is yes. Any LR(k) language is also an LL(1)
> language.
Excuse me, but according to Hopcroft and Ullman, "Introduction to
Automata Theory, Languages, and Computation" (p. 269), the LL(k)
grammars are a proper subset of the LR(k) grammars.
It is true that any LR(k) language is also an LR(1) language, but that
doesn't mean much in relation to LL(k) languages.
--
Bill Leonard
Concurrent Computer Corporation
2101 W. Cypress Creek Road
Fort Lauderdale, FL 33309
Bill.Leonard@mail.ccur.com
--
Return to the
comp.compilers page.
Search the
comp.compilers archives again.