Re: LL(2) always factorable to LL(1)?

bill@amber.ssd.csd.harris.com (Bill Leonard)
21 Jan 1998 23:51:31 -0500

          From comp.compilers

Related articles
LL(2) always factorable to LL(1)? aduncan@cs.ucsb.edu (Andrew M. Duncan) (1998-01-17)
Re: LL(2) always factorable to LL(1)? clark@quarry.zk3.dec.com (Chris Clark USG) (1998-01-20)
Re: LL(2) always factorable to LL(1)? bill@amber.ssd.csd.harris.com (1998-01-21)
Re: LL(2) always factorable to LL(1)? mickunas@cs.uiuc.edu (1998-01-23)
Re: LL(2) always factorable to LL(1)? cfc@world.std.com (Chris F Clark) (1998-01-23)
Re: LL(2) always factorable to LL(1)? parrt@magelang.com (Terence Parr) (1998-01-23)
Re: LL(2) always factorable to LL(1)? thetick@magelang.com (Scott Stanchfield) (1998-01-24)
Re: LL(2) always factorable to LL(1)? parrt@magelang.com (Terence Parr) (1998-02-01)
| List of all articles for this month |
From: bill@amber.ssd.csd.harris.com (Bill Leonard)
Newsgroups: comp.compilers
Date: 21 Jan 1998 23:51:31 -0500
Organization: Concurrent Computer Corporation, Ft. Lauderdale FL
References: 98-01-071 98-01-080
Keywords: parse, LL(1)

Chris Clark USG <clark@quarry.zk3.dec.com> writes:
> The theoretical answer is yes. Any LR(k) language is also an LL(1)
> language.


Excuse me, but according to Hopcroft and Ullman, "Introduction to
Automata Theory, Languages, and Computation" (p. 269), the LL(k)
grammars are a proper subset of the LR(k) grammars.


It is true that any LR(k) language is also an LR(1) language, but that
doesn't mean much in relation to LL(k) languages.
--
Bill Leonard
Concurrent Computer Corporation
2101 W. Cypress Creek Road
Fort Lauderdale, FL 33309
Bill.Leonard@mail.ccur.com
--


Post a followup to this message

Return to the comp.compilers page.
Search the comp.compilers archives again.