Related articles |
---|
Non-deter. regular expr. -> deter. regular expr. faase@cs.utwente.nl (1996-03-20) |
Re: Non-deter. regular expr. -> deter. regular expr. leichter@smarts.com (Jerry Leichter) (1996-03-22) |
Re: Non-deter. regular expr. -> deter. regular expr. mtimmerm@microstar.com (1996-03-22) |
Re: Non-deter. regular expr. -> deter. regular expr. neumann@PSI.Uni-Trier.DE (1996-03-22) |
Re: Non-deter. regular expr. -> deter. regular expr. ikastan@alumnae.caltech.edu (1996-03-24) |
From: | mtimmerm@microstar.com (Matt Timmermans) |
Newsgroups: | comp.compilers |
Date: | 22 Mar 1996 21:24:59 -0500 |
Organization: | Microstar Software Ltd. |
References: | 96-03-125 |
Keywords: | DFA, theory |
(faase@cs.utwente.nl (Frans F.J. Faase))
| Is it possible to transform any given non-deterministic regular
| expression into a deterministic regular expression?
You've already been chastised for the form of your question, so I won't
bother with that -- I know what you mean.
The answer to this question is no. Neither
(aa)*(ab|c) nor (a|b)*(ac|bd)
can be written deterministically.
| it seems not be possible to map any (non-)deterministic finte state
| autonama to a (non-)deterministic regular expression.
Any DFA or NFA can be written as a regular expression.
</Matt>
--------------------------------------------------------------
Matt Timmermans | Phone: +1 613 596-2233
Microstar Software Ltd. | Fax: +1 613 596-5934
3775 Richmond Rd. | E-mail: mtimmerm@microstar.com
Nepean Ontario CANADA K2H 5B7 | http://www.microstar.com
--
Return to the
comp.compilers page.
Search the
comp.compilers archives again.