Related articles |
---|
[6 earlier articles] |
Re: Regular Expressions dmaze@mit.edu (David Z Maze) (2004-10-12) |
Re: Regular Expressions Martin.Ward@durham.ac.uk (Martin Ward) (2004-10-17) |
Re: Regular Expressions choksheak@yahoo.com (ChokSheak Lau) (2004-10-21) |
Re: regular expressions wendt@CS.ColoState.EDU (1993-03-22) |
Regular Expressions rafae1@hp.fciencias.unam.mx (trejo ortiz alejandro augusto) (1995-10-16) |
Re: Regular Expressions mnp@compass-da.com (Mitchell Perilstein) (1995-10-23) |
Re: Regular Expressions cgh@cs.rice.edu (1995-10-29) |
Re: Regular Expressions odunlain@maths.tcd.ie (Colm O'Dunlaing) (1995-10-31) |
Re: Regular Expressions natasha@softlab.ece.ntua.gr (1995-11-03) |
Re: Regular Expressions sjmccaug@prairienet.org (1995-11-28) |
Re: Regular Expressions jmccarty@spdmail.spd.dsccc.com (1995-11-29) |
Newsgroups: | comp.compilers |
From: | cgh@cs.rice.edu (Christopher G. Hyams) |
Keywords: | lex, DFA |
Organization: | Rice University, Houston, Texas |
References: | 95-10-087 |
Date: | Sun, 29 Oct 1995 03:11:17 GMT |
trejo ortiz alejandro augusto (rafae1@hp.fciencias.unam.mx) wrote:
: Hi everyone.
: I have some problems about regular expressions:
: 3) An ambiguous grammar for regular expressions over the alphabet {a, b}is the
: following:
: R::=RR | R + R | R* | (R) |a|b
: The question is: How can I state an unambiguous grammar for regular
: expressions?
How about:
R ::= R R'
| R + R'
| R *
| ( R )
| R'
R' ::= a | b
--
Chris Hyams
cgh@cs.rice.edu
--
Return to the
comp.compilers page.
Search the
comp.compilers archives again.