Modulo n arithmetics

Christian Fabre <fabre@gr.osf.org>
Fri, 6 Nov 1992 15:27:01 GMT

          From comp.compilers

Related articles
Modulo n arithmetics fabre@gr.osf.org (Christian Fabre) (1992-11-06)
Re: Modulo n arithmetics pardo@cs.washington.edu (1992-11-10)
Re: Modulo n arithmetics drclark@daisy.uwaterloo.ca (David R. Clark) (1992-11-11)
Re: Modulo n arithmetics dneedham@oucsace.cs.ohiou.edu (1992-11-11)
Modulo n arithmetics wchsieh@beethoven.lcs.mit.edu (1992-11-11)
Re: Modulo n arithmetics wendt@CS.ColoState.EDU (1992-11-15)
Re: Modulo n arithmetics johnr@ee.uts.edu.au (1992-11-17)
[4 later articles]
| List of all articles for this month |
Newsgroups: comp.compilers
From: Christian Fabre <fabre@gr.osf.org>
Organization: Compilers Central
Date: Fri, 6 Nov 1992 15:27:01 GMT
Keywords: arithmetic, question, comment

Hello,


I have a question regarding integers arithmetics.


I am wondering if any languages or application heavily rely on
modulo arithmetics:


Given the range [0,50], the basic operation are
redefined as follow:


a op b => ( a op b ) % 51


e.g.:
27+30 = 57 % 51 = 7
12*12 = 144 % 51 = 44


All I can think about is error corection and encryption. Any other purpose ?




Any input welcome, please reply by news.


Christian.
-----
    Christian Fabre, OSF-RI, 2 avenue de Vignate, 38610 Gieres, France.
           fabre@gr.osf.org -- Tel: +33 76.63.48.90
           fabre@ri.osf.fr -- Fax: +33 76.51.05.32
[There's always the Chinese Remainder Theorem. I gather that people have
used it do to large integer problems not requiring a lot of division or
comparison. -John]
--


Post a followup to this message

Return to the comp.compilers page.
Search the comp.compilers archives again.