Related articles |
---|
Modulo n arithmetics fabre@gr.osf.org (Christian Fabre) (1992-11-06) |
Re: Modulo n arithmetics pardo@cs.washington.edu (1992-11-10) |
Re: Modulo n arithmetics drclark@daisy.uwaterloo.ca (David R. Clark) (1992-11-11) |
Re: Modulo n arithmetics dneedham@oucsace.cs.ohiou.edu (1992-11-11) |
Modulo n arithmetics wchsieh@beethoven.lcs.mit.edu (1992-11-11) |
Re: Modulo n arithmetics wendt@CS.ColoState.EDU (1992-11-15) |
Re: Modulo n arithmetics johnr@ee.uts.edu.au (1992-11-17) |
[4 later articles] |
Newsgroups: | comp.compilers |
From: | Christian Fabre <fabre@gr.osf.org> |
Organization: | Compilers Central |
Date: | Fri, 6 Nov 1992 15:27:01 GMT |
Keywords: | arithmetic, question, comment |
Hello,
I have a question regarding integers arithmetics.
I am wondering if any languages or application heavily rely on
modulo arithmetics:
Given the range [0,50], the basic operation are
redefined as follow:
a op b => ( a op b ) % 51
e.g.:
27+30 = 57 % 51 = 7
12*12 = 144 % 51 = 44
All I can think about is error corection and encryption. Any other purpose ?
Any input welcome, please reply by news.
Christian.
-----
Christian Fabre, OSF-RI, 2 avenue de Vignate, 38610 Gieres, France.
fabre@gr.osf.org -- Tel: +33 76.63.48.90
fabre@ri.osf.fr -- Fax: +33 76.51.05.32
[There's always the Chinese Remainder Theorem. I gather that people have
used it do to large integer problems not requiring a lot of division or
comparison. -John]
--
Return to the
comp.compilers page.
Search the
comp.compilers archives again.