Related articles |
---|
Expected Token Density in Random Stream andrew@tomazos.com (Andrew Tomazos) (2011-12-07) |
Re: Expected Token Density in Random Stream kaz@kylheku.com (Kaz Kylheku) (2011-12-11) |
Re: Expected Token Density in Random Stream andrew@tomazos.com (Andrew Tomazos) (2011-12-13) |
Re: Expected Token Density in Random Stream gene.ressler@gmail.com (Gene) (2011-12-19) |
From: | Andrew Tomazos <andrew@tomazos.com> |
Newsgroups: | comp.compilers |
Date: | Wed, 7 Dec 2011 15:06:23 -0800 (PST) |
Organization: | Compilers Central |
Keywords: | parse |
Posted-Date: | 11 Dec 2011 08:11:23 EST |
Summary: We want to find out how often a given token appears in a
random stream formed by concatenating randomly chosen strings from a
given set of strings.
Details:
Given S, an array of n (non-empty) strings; and T, a string of length
m;
We create a random stream of characters by the following process:
1. assign i = a (uniformly) random integer between 1 and n
inclusive
2. write the characters of the ith element of S to the stream
3. goto 1
(The elements of S are not necessarily the same length)
For example:
if S = {"a", "bug", "ug"}
then the stream may start as follows:
augbugugugaabug...
Each time T appears in the stream we call that a hit. More precisely:
1. Initialize a queue Q with m null elements
2. If Q equals T record a hit
3. Pop front of Q
4. Push to back of Q next char from stream
5. Goto 2
For example:
If T = "ugu"...
then:
augbugugugaabug...
1 2
We get two hits so far.
(Note hits can overlap each other)
What is the expected frequency of hits in terms of S and T?
More precisely:
let y be the number of chars read from the stream so far
let x be the number of hits
What is the expected limit of x/y as y approaches infinity?
We can approximate this empirically as follows in C++:
$ cat > HitFinder.cpp
<paste below code>
$ g++ -o HitFinder HitFinder.cpp
$ ./HitFinder ugu a bug ug
T = ugu
A = {a, bug, ug}
(x, y, x/y) = (0, 1, 0)
(x, y, x/y) = (0, 2, 0)
(x, y, x/y) = (0, 4, 0)
(x, y, x/y) = (0, 8, 0)
(x, y, x/y) = (1, 16, 1/16)
(x, y, x/y) = (3, 32, 1/10.6667)
(x, y, x/y) = (8, 64, 1/8)
(x, y, x/y) = (16, 128, 1/8)
...
(x, y, x/y) = (29821708, 268435456, 1/9.00134)
(x, y, x/y) = (59648899, 536870912, 1/9.00052)
(x, y, x/y) = (119304725, 1073741824, 1/8.99999)
(x, y, x/y) = (238593314, 2147483648, 1/9.0006)
(x, y, x/y) = (477198099, 4294967296, 1/9.00039)
As you can see the answer for this converges on 1/9
How can we calculate this figure by direct computation?
ie How would you implement a function with signature...
double ExpectedHitLimit(string T, vector<string> A)
...that quickly calculates this limit for any given T and A?
Thanks and have fun,
Andrew.
--
Andrew Tomazos <andrew@tomazos.com> <http://www.tomazos.com>
// ======================= HitFinder.cpp Cut Here ========================
// (C) 2011, Andrew Tomazos <andrew@tomazos.com>. All Rights Reserved.
#include <queue>
#include <string>
#include <iostream>
#include <limits>
#include <cstdlib>
using namespace std;
typedef long long int64;
bool IsPow2(int64 i)
{
return i != 0 && !(i & (i - 1));
}
int64 x = 0;
void Hit()
{
x++;
}
int Rand(int n)
{
return rand() % n;
}
class RandCharStream
{
public:
vector<string> S;
size_t n, istr, ichar;
RandCharStream(vector<string> S_) :
S(S_),
n(S.size()),
istr(Rand(n)),
ichar(0)
{
}
char nextChar()
{
if (ichar == S[istr].size())
{
istr = Rand(n);
ichar = 0;
}
return S[istr][ichar++];
}
};
class HitFinder
{
public:
RandCharStream& stream;
queue<char> T;
int m;
queue<char> Q;
HitFinder(RandCharStream& stream_, string T_) :
stream(stream_),
m(T_.size())
{
for (int i = 0; i < m; i++)
{
T.push(T_[i]);
Q.push('\0');
}
}
void nextChar()
{
Q.pop();
Q.push(stream.nextChar());
if (Q == T)
Hit();
}
};
int main(int argc, char** argv)
{
if (argc < 3)
{
cerr << "Usage: " << argv[0] << " <T> <S1> <S2> ... <Sn>" << endl;
return -1;
}
string T = argv[1];
cout << "T = " << T << endl;
cout << "A = {";
vector<string> A;
for (int i = 2; i < argc; i++)
{
string s = argv[i];
cout << s << (i < argc - 1 ? ", " : "");
A.push_back(s);
if (s.empty())
{
cerr << "Element S" << i - 1 << " is empty" << endl;
return -1;
}
}
cout << "}" << endl;
cout << endl;
RandCharStream stream(A);
HitFinder finder(stream, T);
for (int64 y = 1; y < __LONG_LONG_MAX__; y++)
{
finder.nextChar();
if (IsPow2(y))
{
cout << "(x, y, x/y) = (" << x << ", " << y << ", ";
if (x == 0)
cout << "0";
else
cout << "1/" << double(y) / double(x);
cout << ")" << endl;
}
}
return 0;
}
//======================= HitFinder.cpp Cut Here ========================
Return to the
comp.compilers page.
Search the
comp.compilers archives again.