Re: Is the language: { (a^n b^m) | n>m>0 } LL(k) ? LR(k) ?

"Alexander Sherman" <AlexanderS@tidex.co.il>
29 Apr 2000 23:51:35 -0400

          From comp.compilers

Related articles
Is the language: { (a^n b^m) | n>m>0 } LL(k) ? LR(k) ? avi.tal@altavista.net (Avi Tal) (2000-04-05)
Re: Is the language: { (a^n b^m) | n>m>0 } LL(k) ? LR(k) ? torbenm@diku.dk (2000-04-11)
Re: Is the language: { (a^n b^m) | n>m>0 } LL(k) ? LR(k) ? feriozi@my-deja.com (2000-04-14)
Re: Is the language: { (a^n b^m) | n>m>0 } LL(k) ? LR(k) ? feriozi@my-deja.com (2000-04-14)
Re: Is the language: { (a^n b^m) | n>m>0 } LL(k) ? LR(k) ? AlexanderS@tidex.co.il (Alexander Sherman) (2000-04-29)
| List of all articles for this month |
From: "Alexander Sherman" <AlexanderS@tidex.co.il>
Newsgroups: comp.compilers
Date: 29 Apr 2000 23:51:35 -0400
Organization: Internet Gold, ISRAEL
References: 00-04-061
Keywords: parse, comment

As I understood from the CFG, it doesn't correspond to your grammar
specification.
What you get is:
        { (a^n+1 b^n) | n>0 }


"Avi Tal" <avi.tal@altavista.net> wrote in message
news:00-04-061@comp.compilers...
> Is the language: { (a^n b^m) | n>m>0 } LL(k) ? LR(k) ?
> An example of a CFG for this grammar is : S -> aaXb , X -> aXb | epsilon
.
>
> Thanks.
> Avi.
[You're right, I should have spotted it. -John]


Post a followup to this message

Return to the comp.compilers page.
Search the comp.compilers archives again.